বিপরীত ত্রিকোণমিতিক ফাংশনের যোগ বিয়োগ
cosec2(tan−1(12))−sec2(cot−13)=? cos{e} c^{2} \left ( \tan^{- 1}{\left ( \frac{1}{2} \right )} \right ) - sec^{2}{\left ( cot^{- 1}{\sqrt{3}} \right )} = ? cosec2(tan−1(21))−sec2(cot−13)=?
1
2
11/3
π/2
cosec2(tan−1(12))−sec2(cot−13) cos{e} c^{2} \left ( \tan^{- 1}{\left ( \frac{1}{2} \right )} \right ) - sec^{2}{\left ( cot^{- 1}{\sqrt{3}} \right )} cosec2(tan−1(21))−sec2(cot−13)
=[1+cot2(tan−112)]−[1+tan2(cot−13)]=(1+4)−(1+13)=113 =\left[1+\cot ^{2}\left(\tan ^{-1} \frac{1}{2}\right)\right]-\left[1+\tan ^{2}\left(\cot ^{-1} \sqrt{3}\right)\right]\\=(1+4)-\left(1+\frac{1}{3}\right)\\=\frac{11}{3} =[1+cot2(tan−121)]−[1+tan2(cot−13)]=(1+4)−(1+31)=311
উদ্দীপক-১: f(x)=cosxf(x)=\cos xf(x)=cosx
উদ্দীপক-2: cot−1(1x)+12sec−1(1+y21−y2)+12cosec−1(1+z22z)=π\cot ^{-1}\left(\frac{1}{x}\right)+\frac{1}{2} \sec ^{-1}\left(\frac{1+y^{2}}{1-y^{2}}\right)+\frac{1}{2} \operatorname{cosec}^{-1}\left(\frac{1+z^{2}}{2 z}\right)=\picot−1(x1)+21sec−1(1−y21+y2)+21cosec−1(2z1+z2)=π.
costan−1sincot−1(x)=? \cos \tan ^{-1} \sin \cot ^{-1}(\mathrm{x})=? costan−1sincot−1(x)=?
tan-12+cot-11/3 এর মান কোনটি?
sin-1x+sin-1y=π/2 হলে x2+y2 এর মান কত?