নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স
∣22X4443X3∣=0 \left \lvert \begin{matrix} 2 & 2 & X \\ 4 & 4 & 4 \\ 3 & X & 3 \end{matrix} \right \rvert = 0 24324XX43=0 হলে, x এর মান কত?
(2,4)
(4,2)
(2,3)
(3,4)
∣22x4443x3∣=0 \left|\begin{array}{lll}2 & 2 & \mathrm{x} \\ 4 & 4 & 4 \\ 3 & \mathrm{x} & 3\end{array}\right|=0 24324xx43=0
বা, 2(12−4x)−2(12−12)+x(4x−12)=0 2(12-4 x)-2(12-12)+x(4 x-12)=0 2(12−4x)−2(12−12)+x(4x−12)=0
বা, 24−8x+4x2−12x=0 24-8 x+4 x^{2}-12 x=0 24−8x+4x2−12x=0
বা, x2−5x+6=0 x^{2}-5 x+6=0 x2−5x+6=0
বা (x−3)(x−2)=0 (x-3)(x-2)=0 (x−3)(x−2)=0
∴x=2,3 \therefore {x}=2,3 ∴x=2,3
A=[1322031−11] \ \mathrm{~A}=\left[\begin{array}{rrr}1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1\end{array}\right] A=12130−1231 এবং f(x)=3x2+2x−5 \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{x}-5 f(x)=3x2+2x−5 এবং C=[a−b−c2aabb−c−a2bccc−a−b2] C=\left[\begin{array}{ccc}\frac{a-b-c}{2} & a & a \\ b & \frac{b-c-a}{2} & b \\ c & c & \frac{c-a-b}{2}\end{array}\right] C=2a−b−cbca2b−c−acab2c−a−b
D=∣bccaababca2 b2c2∣ \mathrm{D}=\left|\begin{array}{ccc}\mathrm{bc} & \mathrm{ca} & \mathrm{ab} \\ \mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2}\end{array}\right| D=bcaa2cab b2abcc2 একটি তৃতীয় মাত্রার নির্ণায়ক।
X=[xyz],A=[2−1−11323−1−5],B=[611] X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 3 & 2 \\ 3 & -1 & -5\end{array}\right], B=\left[\begin{array}{l}6 \\ 1 \\ 1\end{array}\right] X=xyz,A=213−13−1−12−5,B=611 এবং C=[pqrp2q2r2p3−1q3−1r3−1] C=\left[\begin{array}{ccc}p & q & r \\ p^{2} & q^{2} & r^{2} \\ p^{3}-1 & q^{3}-1 & r^{3}-1\end{array}\right] C=pp2p3−1qq2q3−1rr2r3−1
P=(abc2a3+12b3+12c3+1a2b2c2);X=(xyz) P=\left(\begin{array}{ccc}a & b & c \\ 2 a^{3}+1 & 2 b^{3}+1 & 2 c^{3}+1 \\ a^{2} & b^{2} & c^{2}\end{array}\right) ; X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) P=a2a3+1a2b2b3+1b2c2c3+1c2;X=xyz