মান নির্ণয়

sinx=? \sin x= ?

কেতাব স্যার লিখিত

Solve: sinx=sin2x2=2sinx2cosx2 \sin x=\sin 2 \cdot \frac{x}{2}=2 \sin \frac{x}{2} \cdot \cos \frac{x}{2} =2cosx2sin2x22=2cosx22sinx22cosx22 =2 \cos \frac{x}{2} \cdot \sin 2 \cdot \frac{x}{2^{2}}=2 \cos \frac{x}{2} \cdot 2 \sin \frac{x}{2^{2}} \cdot \cos \frac{x}{2^{2}}

=(2cosx2)(2cosx22)sinx22 =\left(2 \cos \frac{x}{2}\right) \cdot\left(2 \cos \frac{x}{2^{2}}\right) \cdot \sin \frac{x}{2^{2}}

=(2cosx2)(2cosx22)(2cosx23)sinx23=(2cosx2)(2cosx22)(2cosx23)(2cosx2n1)(2cosx2n)sinx2nsinx=2ncosx2cosx22cosx2nsinx2n \begin{array}{l} =\left(2 \cos \frac{x}{2}\right) \cdot\left(2 \cos \frac{x}{2^{2}}\right) \cdot\left(2 \cos \frac{x}{2^{3}}\right) \cdot \sin \frac{x}{2^{3}} \\ =\left(2 \cos \frac{x}{2}\right) \cdot\left(2 \cos \frac{x}{2^{2}}\right) \cdot\left(2 \cos \frac{x}{2^{3}}\right) \cdot \cdots \cdots \\ \cdots\left(2 \cos \frac{x}{2^{n-1}}\right)\left(2 \cos \frac{x}{2^{n}}\right) \cdot \sin \frac{x}{2^{n}} \\ \sin x=2^{n} \cdot \cos \frac{x}{2} \cdot \cos \frac{x}{2^{2}} \cdot \cdots \cdot \cos \frac{x}{2^{n}} \cdot \sin \frac{x}{2^{n}} \end{array}

মান নির্ণয় টপিকের ওপরে পরীক্ষা দাও