মান নির্ণয়
tan(π6+θ)tan(π6−θ)=?\tan \left(\frac{\pi}{6}+\theta\right) \tan \left(\frac{\pi}{6}-\theta\right)= ? tan(6π+θ)tan(6π−θ)=?
2cos2θ+12cos2θ−1\frac{2 \cos 2 \theta+1}{2 \cos 2 \theta-1}2cos2θ−12cos2θ+1
2cos2θ−12cos2θ+1\frac{2 \cos 2 \theta-1}{2 \cos 2 \theta+1}2cos2θ+12cos2θ−1
3cos2θ−13cos2θ+1\frac{3 \cos 2 \theta-1}{3 \cos 2 \theta+1}3cos2θ+13cos2θ−1
−2cos2θ−12cos2θ+1-\frac{2 \cos 2 \theta-1}{2 \cos 2 \theta+1}−2cos2θ+12cos2θ−1
Solve:tan(π6+θ)tan(π6−θ)=sin(π6+θ)sin(π6−θ)cos(π6+θ)cos(π6−θ)=2sin(π6+θ)sin(π6−θ)2cos(π6+θ)cos(π6−θ)=cos(π6+θ−π6+θ)−cos(π6+θ+π6−θ)cos(π6+θ−π6+θ)+cos(π6+θ+π6−θ)=cos2θ−cosπ3cos2θ+cosπ3=cos2θ−12cos2θ+12=2cos2θ−12cos2θ+1 (ans ) \begin{array}{l} \tan \left(\frac{\pi}{6}+\theta\right) \tan \left(\frac{\pi}{6}-\theta\right) \\ = \frac{\sin \left(\frac{\pi}{6}+\theta\right) \sin \left(\frac{\pi}{6}-\theta\right)}{\cos \left(\frac{\pi}{6}+\theta\right) \cos \left(\frac{\pi}{6}-\theta\right)} \\ = \frac{2 \sin \left(\frac{\pi}{6}+\theta\right) \sin \left(\frac{\pi}{6}-\theta\right)}{2 \cos \left(\frac{\pi}{6}+\theta\right) \cos \left(\frac{\pi}{6}-\theta\right)} \\ = \frac{\cos \left(\frac{\pi}{6}+\theta-\frac{\pi}{6}+\theta\right)-\cos \left(\frac{\pi}{6}+\theta+\frac{\pi}{6}-\theta\right)}{\cos \left(\frac{\pi}{6}+\theta-\frac{\pi}{6}+\theta\right)+\cos \left(\frac{\pi}{6}+\theta+\frac{\pi}{6}-\theta\right)} \\ = \frac{\cos 2 \theta-\cos \frac{\pi}{3}}{\cos 2 \theta+\cos \frac{\pi}{3}}=\frac{\cos 2 \theta-\frac{1}{2}}{\cos 2 \theta+\frac{1}{2}} \\ = \frac{2 \cos 2 \theta-1}{2 \cos 2 \theta+1}\text { }(\text {ans }) \end{array} tan(6π+θ)tan(6π−θ)=cos(6π+θ)cos(6π−θ)sin(6π+θ)sin(6π−θ)=2cos(6π+θ)cos(6π−θ)2sin(6π+θ)sin(6π−θ)=cos(6π+θ−6π+θ)+cos(6π+θ+6π−θ)cos(6π+θ−6π+θ)−cos(6π+θ+6π−θ)=cos2θ+cos3πcos2θ−cos3π=cos2θ+21cos2θ−21=2cos2θ+12cos2θ−1 (ans )
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
যদি π2<θ<πএবংsinθ=35হয়, \frac{\pi}{2} < \theta < \pi এ ব ং \sin{\theta} = \frac{3}{5} হ য় , 2π<θ<πএবংsinθ=53হয়, তবে cosθ এর মান কত?
tan105∘=tan(60∘+45∘)\tan 105^{\circ}=\tan \left(60^{\circ}+45^{\circ}\right)tan105∘=tan(60∘+45∘) এর মান কত?
If cosθ=513\displaystyle \cos \theta =\frac{5}{13}cosθ=135, where θ\theta θ being an acute angle, then the value of cosθ+5cotθcosec θ−cosθ\dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta }cosec θ−cosθcosθ+5cotθ will be