ত্রিকোণমিতিক অনুপাত

tan2Csec2B+2=?tan^{2}\, C\, -\, sec^{2}\, B\, +\, 2 = ?

হানি নাটস

Given, AB=AC=10AB = AC = 10 and BC=18BC = 18 cm

cosB=AB2+BC2AC22AB×BC\cos B = \dfrac{AB^2 + BC^2 - AC^2}{2 AB \times BC}

cosB=102+1821022×10×18\cos B = \dfrac{10^2 + 18^2 - 10^2}{2\times10 \times 18}

cosB=910\cos B = \dfrac{9}{10}

cosB=BH=910\cos B = \dfrac{B}{H} = \dfrac{9}{10}

Now, cosC=AC2+BC2AB22AC×BC\cos C =\dfrac{AC^2 + BC^2 - AB^2}{2 AC \times BC}

cosC=102+1821022×10×18\cos C = \dfrac{10^2 + 18^2 - 10^2}{2\times10 \times 18}

cosC=910\cos C = \dfrac{9}{10}

Using Pythagoras Theorem,

H2=P2+B2H^2 = P^2 + B^2

102=P2+9210^2 = P^2 + 9^2

P=19P = \sqrt{19}

tanC=PB=199\tan C = \dfrac{P}{B} = \dfrac{\sqrt{19}}{9}

Thus, tan2Csec2B+2=(199)2(109)2+2\tan^2 C - \sec^2 B + 2 = (\dfrac{\sqrt{19}}{9})^2 - (\dfrac{10}{9})^2 + 2

tan2Csec2B=198110081+2\tan^2 C - \sec^2 B= \dfrac{19}{81} - \dfrac{100}{81} + 2

tan2Csec2C+2=8181+2=1\tan^2 C - \sec^2 C + 2= \dfrac{-81}{81} + 2= 1

ত্রিকোণমিতিক অনুপাত টপিকের ওপরে পরীক্ষা দাও