
tan2C−sec2B+2=?
হানি নাটস
Given, AB=AC=10 and BC=18 cm
cosB=2AB×BCAB2+BC2−AC2
cosB=2×10×18102+182−102
cosB=109
cosB=HB=109
Now, cosC=2AC×BCAC2+BC2−AB2
cosC=2×10×18102+182−102
cosC=109
Using Pythagoras Theorem,
H2=P2+B2
102=P2+92
P=19
tanC=BP=919
Thus, tan2C−sec2B+2=(919)2−(910)2+2
tan2C−sec2B=8119−81100+2
tan2C−sec2C+2=81−81+2=1