The arithmetic mean of the roots of the equation
4cos2x−4cos2x−cos(315π+x)=1 in the interval (0,315) is
হানি নাটস
Given
4cos3x−4cos3x−cos(315π+x)=1
⇒4cos3x−4cos3x−cosx−1=0[∵cos(315π+x)=(−1)315cosx=−cosx]
⇒(4cos2x+1)(cosx−1)=0
⇒cosx−1=0
4cos2x+1=0
⇒cosx=1
⇒cosx=cos0
⇒x=2nπ,n∈I
∴x=2π,4π,6π,8π,...100π[∵0<x<315]
∴ Required Arithmetic mean
=502π+4π+6π+8π,...+100π=502π.250.51=51π