x^n এর সহগ নির্ণয় বিষয়ক
The cofficient of x32 x^{32} x32in the expansion of (x4−1x3)15 ( x^4 - \frac {1}{x^3})^{15} (x4−x31)15is
273
546
1365
1092
Step 1: Find value of general term for expansion\textbf{Step 1: Find value of general term for expansion}Step 1: Find value of general term for expansion
Given equation is\text{Given equation is}Given equation is
(x4−1x3)15\bigg ( x^4 -\dfrac {1}{x^3}\bigg)^{15} (x4−x31)15
Tn=Tr+1=nCrp(n−r).qrT_n= T_{r +1 }=^nC_r p^{ (n-r)}.q^rTn=Tr+1=nCrp(n−r).qr
⇒Tn=Tr+1\Rightarrow T_n=T_{r+1}⇒Tn=Tr+1
=15Cr(x4)(15−r).(−1x3)r = ^{15}C_r (x^4)^{(15-r)} .\bigg (\dfrac {-1}{x^3}\bigg)^r =15Cr(x4)(15−r).(x3−1)r
=(−1)r.15Cr.x(60−4r).(1x3)r = (-1)^r. ^{15}C_r. x^{(60-4r)} .\bigg (\dfrac {1}{x^3}\bigg)^r =(−1)r.15Cr.x(60−4r).(x31)r
=(−1)r.15Crx(60−4r−3r)=(-1)^r . ^{15}C_r x^{(60 -4r -3r)} =(−1)r.15Crx(60−4r−3r)
=(−1)r.15Crx(60−7r)=(-1)^r . ^{15}C_r x^{(60 -7r)} =(−1)r.15Crx(60−7r)
Step 2: Find value of coefficient of term x32\textbf{Step 2: Find value of coefficient of term x}^{32}Step 2: Find value of coefficient of term x32
To obtain term of x32\text{To obtain term of x}^{32} To obtain term of x32
⇒60−7r=32\Rightarrow 60-7r=32 ⇒60−7r=32
⇒\Rightarrow ⇒ 7r=287r=287r=28
∴\therefore ∴ r=4r=4 r=4
For r=4,5th term is given by-\text{For r=4,5th term is given by-}For r=4,5th term is given by-
T5=T4+1=(−1)4.15C4x(60−7×4)=15C4x32. T_5=T_{4+1} = (-1)^4.^{15}C_4 x^{(60-7 \times 4)} = ^{15}C_4 x^{32} .T5=T4+1=(−1)4.15C4x(60−7×4)=15C4x32.
∴ \therefore ∴ Coefficient of x32\text{Coefficient of } x^{32} Coefficient of x32=15C4=^{15}C_4 =15C4
=15×14×13×124×3×2×1= \dfrac { 15 \times 14 \times 13 \times 12 }{ 4 \times 3 \times 2\times 1} =4×3×2×115×14×13×12
=1365 = 1365 =1365
Therefore,value of coefficient of term x32 is 1365\textbf{Therefore,value of coefficient of term x$^{32}$ is 1365}Therefore,value of coefficient of term x32 is 1365
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
f(x)=3+x2\mathrm{f}(\mathrm{x})=3+\frac{x}{2}f(x)=3+2x এবং g(p)=1−12pg(p)=1-\frac{1}{2} pg(p)=1−21p
The coefficient of x−4 x^{-4} x−4 in the expansion of (4x5+52x)8 ( \frac {4x}{5} + \frac {5}{2x} )^8 (54x+2x5)8 is?
(1+2y)m (1+2 y)^{\mathrm{m}} (1+2y)m একটি বীজগাণিতিক রাশি।
দৃশ্যকল্প-১ : (a+px)n,n∈N (a+p x)^{n}, n \in N (a+px)n,n∈N একটি দ্বিপদী রাশি।
দৃশ্যকল্প-২: φ(x)=px2+qx+r;p≠0 \varphi(\mathrm{x})=\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r} ; \mathrm{p} \neq 0 φ(x)=px2+qx+r;p=0.