স্পর্শক ও অভিলম্ব বিষয়ক

The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is :

হানি নাটস

Step -1: Differentiate slope.{\textbf{Step -1: Differentiate slope}}{\textbf{.}}

Given: slope of tangent is equal to ratio of abscissa to the ordinate of the point.{\text{Given: slope of tangent is equal to ratio of abscissa to the ordinate of the point}}{\text{.}}

Let slope of the tangent be dydx.{\text{Let slope of the tangent be }}\dfrac{{dy}}{{dx}}.

According to the question\text{According to the question}

dydx=xy\dfrac{{dy}}{{dx}} = \dfrac{x}{y}

Step -2: Solve further to find the equation.{\textbf{Step -2: Solve further to find the equation}}{\textbf{.}}

Separating the variables.{\text{Separating the variables}}{\text{.}}

ydy=xdxydy = xdx

Upon integration we get,{\text{Upon integration we get,}}

ydy=xdx\int {ydy = \int {xdx} }

y22=x22+C\Rightarrow\dfrac{{{y^2}}}{2} = \dfrac{{{x^2}}}{2} + C

y2=x2+2C\Rightarrow{y^2} = {x^2} + 2C

x2y2+2C=0 \Rightarrow {x^2} - {y^2} + 2C = 0

x2y2=k \Rightarrow {x^2} - {y^2} = k [ k = - 2 C]\textbf{[ k = - 2 C]}

Hence, the given equation is of a rectangular hyperbola.{\textbf{Hence, the given equation is of a rectangular hyperbola}}{\textbf{.}}

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও