সরলরেখার সমীকরণ
The distance of the points of intersection of the lines 2x−3y+5=02x - 3y + 5 = 02x−3y+5=0 and 3x+4y=03x + 4y = 03x+4y=0 from the line 5x−2y=05x - 2y = 05x−2y=0 is-
1301729\frac{{130}}{{17\sqrt {29} }}1729130
13729\frac{{13}}{{7\sqrt {29} }}72913
1307\frac{{130}}{7}7130
None of these
2x−3y+5=03x+4y=0 \begin{array}{c} 2 x-3 y+5=0 \\ 3 x+4 y=0 \end{array} 2x−3y+5=03x+4y=0
the point of intersection (−2017,1517) \left(-\frac{20}{17}, \frac{15}{17}\right) (−1720,1715)
∴ distance ∣5×(−2017)−2(1517)∣52+(−2)2=1301729 \begin{aligned} \therefore \text { distance } & \frac{\left|5 \times\left(-\frac{20}{17}\right)-2\left(\frac{15}{17}\right)\right|}{\sqrt{5^{2}+(-2)^{2}}} \\ = & \frac{130}{17 \sqrt{29}} \end{aligned} ∴ distance =52+(−2)25×(−1720)−2(1715)1729130
দৃশ্যকল্প ১: x−2y+1=0 x-2 y+1=0 x−2y+1=0
দৃশ্যকল্প ২ : P⃗=i^−2j^+k^;Q⃗=2i^+j^−3k^ \vec{P}=\hat{i}-2 \hat{j}+\hat{k} ; \vec{Q}=2 \hat{i}+\hat{j}-3 \hat{k} P=i^−2j^+k^;Q=2i^+j^−3k^
AB রেখার সমীকরণ x+y=4;C,AB x+y=4 ; C, A B x+y=4;C,AB এর মধ্যবিন্দু।
দৃশ্যকল্প-১: 3x−4y+12=0 3 \mathrm{x}-4 \mathrm{y}+12=0 3x−4y+12=0
দৃশ্যকল্প-২: 8x+15y−12=0 8 x+15 y-12=0 8x+15y−12=0