বৃত্তের সমীকরণ ও পোলার সমীকরণ সংক্রান্ত
The equation of circle with centre (1, 2) and tangent x+y−5=0x + y - 5 = 0x+y−5=0 is
x2+y2+2x−4y+6=0{x^2} + {y^2} + 2x - 4y + 6 = 0x2+y2+2x−4y+6=0
x2+y2−2x−4y+3=0{x^2} + {y^2} - 2x - 4y + 3 = 0x2+y2−2x−4y+3=0
x2+y2−2x+4y+8=0{x^2} + {y^2} - 2x + 4y + 8 = 0x2+y2−2x+4y+8=0
x2+y2−2x−4y+8=0{x^2} + {y^2} - 2x - 4y + 8 = 0x2+y2−2x−4y+8=0
∣x+y−52∣ = r ⇒1+2−52 = r ∴r = 2 \left|\frac{x+y-5}{\sqrt{2}}\right|\ =\ r\ \Rightarrow\frac{1+2-5}{\sqrt{2}}\ =\ r\ \therefore r\ =\ \sqrt{2}\ 2x+y−5 = r ⇒21+2−5 = r ∴r = 2
(x−1)2+(y−2)2=2\left(x-1\right)^2+\left(y-2\right)²=2(x−1)2+(y−2)2=2
⇨x2+y2−2x−4y+3=0{x^2} + {y^2} - 2x - 4y + 3 = 0x2+y2−2x−4y+3=0