স্পর্শক ও অভিলম্ব বিষয়ক

The equation of the tangent to the curve xa+yb=1\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1 at the point (x1,y1)(x_{1}, y_{1}) is xax1+yby1=k\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = k. Then, the value of kk is

হানি নাটস

Given curve is

xa+yb=1\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1 ... (i)

On differentiating w.r.t. to xx, we get

1a12x+1b12ydydx=0\dfrac {1}{\sqrt {a}} \cdot \dfrac {1}{2\sqrt {x}} + \dfrac {1}{\sqrt {b}} \cdot \dfrac {1}{2\sqrt {y}} \dfrac {dy}{dx} = 0

dydx=byax[dydx](x1,y1)=by1ax1\Rightarrow \dfrac {dy}{dx} = -\dfrac {\sqrt {b}\sqrt {y}}{\sqrt {a}\sqrt {x}} \Rightarrow \left [\dfrac {dy}{dx}\right ]_{(x_{1}, y_{1})} = \dfrac {-\sqrt {b}\sqrt {y_{1}}}{\sqrt {a}\sqrt {x_{1}}}

Equation of tangent passing through the point (x1,y1)(x_{1}, y_{1}) is

(yy1)=by1ax1(xx1)(y - y_{1}) = \dfrac {-\sqrt {b}\sqrt {y_{1}}}{\sqrt {a}\sqrt {x_{1}}} (x - x_{1})

yby1y1by1=xax1+x1ax1\dfrac {y}{\sqrt {by_{1}}} - \dfrac {y_{1}}{\sqrt {by_{1}}} = -\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {x_{1}}{\sqrt {ax_{1}}}

xax1+yby1=x1ax1+y1by1=x1a+y1b\Rightarrow \dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = \dfrac {x_{1}}{\sqrt {ax_{1}}} + \dfrac {y_{1}}{\sqrt {by_{1}}} = \sqrt {\dfrac {x_{1}}{a}} + \sqrt {\dfrac {y_{1}}{b}}

xax1+yby1=1\Rightarrow \dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = 1 [from Eq. (i)]

[at(x1,y1),x1a+y1b=1]\left [\because at (x_{1}, y_{1}), \sqrt {\dfrac {x_{1}}{a}} + \sqrt {\dfrac {y_{1}}{b}} = 1\right ]

But xax1+yby1=k\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = k (given)

Therefore, k=1k = 1

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও