বৃহত্তম ও ক্ষুদ্রতম পদ
The greatest term in the expansion of (2x+3y)11(2x + 3y)^{11}(2x+3y)11 when x = 9 and y = 4 is :
(165)(10)8(10)^8(10)8(12)3(12)^3(12)3
(330) (18)7(12)4(18)^7 (12)^4(18)7(12)4
462(18)8(12)5(18)^8 (12)^5(18)8(12)5
None of these
Given:- (2x+3y)′′ (2 x+3 y)^{\prime \prime} (2x+3y)′′ at x=9,y=4 x=9, y=4 x=9,y=4
The Greatest term will be
=(n+1)×∣y∣∣x∣+∣y∣=12×49+4=4813=3.69 \begin{array}{l} =\frac{(n+1) \times|y|}{|x|+|y|} \\ =\frac{12 \times 4}{9+4}=\frac{48}{13}=3.69 \end{array} =∣x∣+∣y∣(n+1)×∣y∣=9+412×4=1348=3.69
Hence, Greatest term is 4th 4^{\text {th }} 4th term
T4=T3+1=HC3(2x)8(3y)3=11×10×9×8!3×2×1×8!(2×9)8(3×4)3T4=165(18)8(12)3 \begin{aligned} T_{4}=T_{3+1} & ={ }^{H} C_{3}(2 x)^{8}(3 y)^{3} \\ & =\frac{11 \times 10 \times 9 \times 8 !}{3 \times 2 \times 1 \times 8 !}(2 \times 9)^{8}(3 \times 4)^{3} \\ T_{4} & =165(18)^{8}(12)^{3} \end{aligned} T4=T3+1T4=HC3(2x)8(3y)3=3×2×1×8!11×10×9×8!(2×9)8(3×4)3=165(18)8(12)3
If x=1/3, then the greatest term in the expansion of (1+4x)8(1+4x)^{8}(1+4x)8 is
(1-3x)9 এর বিস্তৃতিতে পদসংখ্যা দশটি।
সাংখ্যমানে বৃহত্তম পদটি কত; যখন x=3?
The largest term in the expansion of (b2+b2)100\left(\frac{b}{2} + \frac{b}{2}\right)^{100}(2b+2b)100 is ;
The greatest terms of the expansion (2x+5y)13(2x+5y)^{13}(2x+5y)13 when x=10x=10x=10, y=2y=2y=2 is?