i বিষয়ক

The imaginary number ii is defined such that i2=1i^2=-1. What is the value of (1i5)(1+i5)(1 - i \sqrt {5}) ( 1 + i\sqrt {5})?

হানি নাটস

Imaginary number is i=1i=\sqrt {-1}

Value of (1i5)(1+i5)(1-i\sqrt{5})(1+i\sqrt{5})

It is in the form of (a+b)(ab)=a2b2(a+b)(a-b)=a^2-b^2

So, (1i5)(1+i5)=(1)2(i5)2(1-i\sqrt{5})(1+i\sqrt{5})={(1)}^2-{(i\sqrt {5})}^2

1(i2×5)\Rightarrow 1-(i^2\times 5)

1(1×5)\Rightarrow 1-(-1\times 5)

6\Rightarrow 6

(1i5)(1+i5)=6(1-i\sqrt{5})(1+i\sqrt{5})=6

i বিষয়ক টপিকের ওপরে পরীক্ষা দাও