i বিষয়ক
The imaginary number iii is defined such that i2=−1i^2=-1i2=−1. What is the value of (1−i5)(1+i5)(1 - i \sqrt {5}) ( 1 + i\sqrt {5})(1−i5)(1+i5)?
5\sqrt55
555
666
6\sqrt66
Imaginary number is i=−1i=\sqrt {-1}i=−1
A+iB=2−i35−i4 A+i B=\frac{2-i 3}{5-i 4} A+iB=5−i42−i3 হলে, B \mathrm{B} B এর মান কোনটি?
√2x-i+1=0 একটি জটিল সংখ্যা
x4(1+1x2+1x4)=? x^{4} \left ( 1 + \frac{1}{x^{2}} + \frac{1}{x^{4}} \right ) = ? x4(1+x21+x41)=?
i2=−1 i^{2} = - 1 i2=−1 হলে, i−1−1(2i−1+i) \frac{i^{- 1} - 1}{\left (2 i^{- 1} + i )\right.} (2i−1+i)i−1−1 এর মান-
Express the complex number given in the form a+iba+iba+ib.i−39i^{-39}i−39.