লিমিট

The integer nn for which limx0(cosx1)(cosxex)xn\displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)(\cos x-e^{x})}{x^{n}} is finite non zero number is

হানি নাটস

limx0(cosx1)(cosxex)xn=limx0[(cosx1)x2]×cosxexxn2\displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { (\cos { x } -1)\left( \cos { x } -{ e }^{ x } \right) }{ { x }^{ n } } } =\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \cfrac { \left( \cos { x } -1 \right) }{ { x }^{ 2 } } \right] } \times \cfrac { { \cos { x } -{ e }^{ x } } }{ { x }^{ n-2 } }
=12limx0cosxexxn2=00=-\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { \cos { x } -{ e }^{ x } } }{ { x }^{ n-2 } } } =\cfrac { 0 }{ 0 } form

=12limx0sinxex(n2)xn3=12(n2)limx01xn3=-\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { -\sin { x } -{ e }^{ x } } }{ (n-2){ x }^{ n-3 } } } =\cfrac { 1 }{ 2(n-2) } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { 1 } }{ { x }^{ n-3 } } }

\therefore for the above limit to be finite n3=0n-3=0
n=3\Rightarrow n=3

লিমিট টপিকের ওপরে পরীক্ষা দাও