UV আকারের (Integration by parts)

The integral of esinx(xcosxsecxtanx)dx\displaystyle\int e^{\sin x}(x\cos x-\sec x\tan x)dx is?

হানি নাটস

esinxxcosxdxesinxsecxtanxdx=xf(x)esinxcosxg(x)dxef(x)sinxsecxtanxdxg(x) \begin{aligned} & \int e^{\sin x \cdot x \cdot \cos x} d x-\int e^{\sin x} \cdot \sec x \cdot \tan x \cdot d x \\ = & \int \frac{x}{f(x)} e^{\sin x} \cdot \frac{\cos x}{g(x)} \cdot d x-\int e_{f(x)}^{\sin x} \cdot \underbrace{\sec x \cdot \tan x \cdot d x}_{g(x)}\end{aligned}

Using ILATE.

=xesinx1esinxdxsecxtanxesinx+esinxcosxsesxdx=xesinxesinxdxesinxsecx+esinxdx=xesinxesinxsecx+c \begin{array}{l} =x \cdot e^{\sin x}-\int 1 \cdot e^{\sin x} d x-\int \sec x \cdot \tan x \cdot e^{\sin x} \\ \quad+\int e^{\sin x} \cdot \cos x \cdot \operatorname{ses} x \cdot d x \\ =x \cdot e^{\sin x}-\int e^{\sin x} \cdot d x-e^{\sin x} \cdot \sec x+\int e^{\sin x} \cdot d x \\ =x \cdot e^{\sin x}-e^{\sin x} \sec x+c \end{array}

UV আকারের (Integration by parts) টপিকের ওপরে পরীক্ষা দাও