স্পর্শক ও অভিলম্ব বিষয়ক

The point on the curve y=x1y = \sqrt {x - 1} where the tangent is perpendicular to the line 2x+y5=02x + y - 5 = 0 is

হানি নাটস

dydx=12x1=m1\dfrac {dy}{dx} = \dfrac {1}{2\sqrt {x - 1}} = m_{1} is the slope of tangent to y=x1y=\sqrt{x-1}

Slope of the line 2x+y5=02x + y - 5 = 0 is m2=2m_{2} = -2

For lines are perpendicular

m1m2=1m_{1} m_{2} = -1

    (12x1)(2)=1\implies \left (\dfrac {1}{2\sqrt {x - 1}}\right )(-2) = -1

    22x1=1\implies \dfrac {2}{2\sqrt {x - 1}} = 1

    x1=1\implies \sqrt {x - 1} = 1

Squaring both sides,

    x1=1\implies x - 1 = 1

    x=2\implies x = 2

y=x1\therefore y = \sqrt {x - 1}

=21= \sqrt {2 - 1}

=1= \sqrt {1}

y=1\therefore y = 1

(2,1)\therefore (2, 1) is the point on the curve y=x1y=\sqrt{x-1}

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও