The set of all values of x for which the function ;f(x)=(k2−3k+2)(cos24x−sin24x)+(k−1)x+sin1& ;does not posses critical points is
হানি নাটস
f(x)=(k2−3x+2)cos2x+(k−1)x+sin1
f′(x)=(k−1)(k−2)(−21sin2x)+(k−1)
=(k−1)[1−2k−2sin2x]
Since f(x) does not possess critical points therefore f'(x) is not equal to zero.
i.e.,
k=1 or 1−2k−2sin2x=0 does not posses a solution or sin2x=k−22 does not have a solution.
Hence we must
have k−22>1 as
sin2x<1.
Above implies that ∣k−2∣2≤4
or −2<(k−2)<2
∵x2<a2⇒(x2−a2)=−ive or −a<x<a
∴0<k<4. Also k=1.
∴kϵ(0,1)∪(1,4)