লঘুমান গুরুমান বিষয়ক

The set of all values of x for which the function ;f(x)=(k23k+2)(cos2x4sin2x4)+(k1)x+sin1\displaystyle f\left ( x \right )= \left ( k^{2}-3k+2 \right )\left ( \cos ^{2}\frac{x}{4}-\sin ^{2}\frac{x}{4} \right )+\left ( k-1 \right )x+\sin 1& ;does not posses critical points is 

হানি নাটস

f(x)=(k23x+2)cosx2+(k1)x+sin1\displaystyle f\left ( x \right )= \left ( k^{2}-3x+2 \right )\cos \frac{x}{2}+\left ( k-1 \right )x+\sin 1

f(x)=(k1)(k2)(12sinx2)+(k1)\displaystyle {f}'\left ( x \right )= \left ( k-1 \right )\left ( k-2 \right )\left ( -\frac{1}{2}\sin \frac{x}{2} \right )+\left ( k-1 \right )

=(k1)[1k22sinx2]=\displaystyle \left ( k-1 \right )\left [ 1-\frac{k-2}{2}\sin \frac{x}{2} \right ]

Since f(x) does not possess critical points therefore f'(x) is not equal to zero.

i.e.,

k1\displaystyle k\neq 1 or 1k22sinx2=0\displaystyle 1-\frac{k-2}{2}\sin \frac{x}{2}= 0 does not posses a solution or sinx2=2k2\displaystyle \sin \frac{x}{2}= \frac{2}{k-2} does not have a solution.

Hence we must

have 2k2>1\displaystyle \left | \frac{2}{k-2} \right |> 1 as

sinx2<1.\displaystyle \left | \sin \frac{x}{2} \right |< 1.

Above implies that k224\displaystyle \left | k-2 \right |^{2}\leq 4

or 2<(k2)<2\displaystyle -2< \left ( k-2 \right )< 2

x2<a2(x2a2)=ive\displaystyle \because x^{2}< a^{2}\Rightarrow \left ( x^{2}-a^{2} \right )= -ive or a<x<a\displaystyle -a< x< a

0<k<4\displaystyle \therefore 0 < k< 4. Also k1.\displaystyle k\neq 1.

kϵ(0,1)(1,4)\displaystyle \therefore k \epsilon \left ( 0,1 \right )\cup \left ( 1,4 \right )

লঘুমান গুরুমান বিষয়ক টপিকের ওপরে পরীক্ষা দাও