সাধারণ পদ , মধ্যপদ ও সমদূরবর্তী পদ নির্ণয়

The total number of terms in the expansion of (x+a)47(xa)47(x + a)^{47} - (x - a)^{47} after simplification is

হানি নাটস

(x+a)47(xa)47{ \left( x+a \right) }^{ 47 }-{ \left( x-a \right) }^{ 47 }

When we expand the above equation using binomial expansion
(x+y)n=(k=0nnCkxkynk) (x +y)^{n} = \displaystyle (\sum_{k=0}^{n} {^{n}C_k} x^{k}y^{n-k})
So the above equation becomes
(x+a)47=(k=04747Ckxka47k) (x +a)^{47} = \displaystyle (\sum_{k=0}^{47} {^{47}C_k} x^{k}a^{47-k})
(xa)47=(k=04747Ckxk(a)47k) (x -a)^{47} = \displaystyle (\sum_{k=0}^{47} {^{47}C_k} x^{k}(-a)^{47-k})

(x+a)47{ \left( x+a \right) }^{ 47 }\Rightarrow There are 48 terms in the expansion and all are positive

(xa)47{ \left( x-a \right) }^{ 47 }\Rightarrow There are 48 terms in the expansion

The terms with odd powers of a will be cancelled and those with even powers of a will add up.

24 terms will be positive and 24 negative in the expansion of (xa)47 (x-a)^{47}

48 terms positive-[24 terms negative and 24 terms positive]

=48termspositive+24termsnegative+24termspositive=48\quad terms\quad positive +24\quad terms\quad negative+24\quad terms\quad positive

=24=24 terms

সাধারণ পদ , মধ্যপদ ও সমদূরবর্তী পদ নির্ণয় টপিকের ওপরে পরীক্ষা দাও