নির্দিষ্ট যোগজ
The value of ;∫0π/4secx(secx+tanx)2dx\displaystyle \int_{0}^{\pi /4}\frac{\sec x}{\left ( \sec x+\tan x \right )^{2}}dx∫0π/4(secx+tanx)2secxdx is& ;
1+2\displaystyle 1+\sqrt{2}1+2
−(1+2)\displaystyle -\left ( 1+\sqrt{2} \right )−(1+2)
−2\displaystyle -\sqrt{2}−2
none of these
Let I=∫0π4secx(secx+tanx)2dx\displaystyle I=\int _{ 0 }^{ \dfrac { \pi }{ 4 } }{ \frac { \sec { x } }{ { \left( \sec { x } +\tan { x } \right) }^{ 2 } } } dxI=∫04π(secx+tanx)2secxdx
∫0π6sin2xcosxdx= \int_{0}^{\frac{\pi}{6}} \sin ^{2} x \cos x d x= ∫06πsin2xcosxdx= কত ?
f(x)= {x+1forx=0 \left \lbrace \begin{matrix} x + 1 & f{\quad\text{or}\quad} & x & = & 0 \end{matrix} \right . {x+1forx=0 হলে-
∫−1−12f(x)dx=18 \int_{- 1}^{- \frac{1}{2}} f{\left ( x \right )} dx = \frac{1}{8} ∫−1−21f(x)dx=81
∫01f(x)dx=0 \int_{0}^{1} f{\left ( x \right )} dx = 0 ∫01f(x)dx=0
f(−1)=1 f{\left ( - 1 \right )} = 1 f(−1)=1
নিচের কোনটি সঠিক?
∫1e2dxx(1+lnx) \int_{1}^{e^{2}} \frac{dx}{x \left ( 1 + \ln{x} \right )} ∫1e2x(1+lnx)dx এর মান কত?
α এর মান কত হলে ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx \int_{1}^{\alpha} \left \lbrace 2 + x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx + \int_{1}^{\alpha} \left \lbrace 3 - x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx =30