মহাকর্ষীয় বলের সূত্রের ব্যবহার

The value of g'g' at a certain height above the surface of the earth is 1616% of its value on the surface. The height is (R=6300 km)(R = 6300 \ km)

হানি নাটস

\Rightarrow Value of g g^{\prime} at h=16% h=16 \% of g g at Sugace

g=16g100 (1) g=GM(R+h)2g=GMR2(1+hR)2g=g(1+hR)2 (11) [GMR2=g] \begin{array}{l} \Rightarrow g^{\prime}=\frac{16 g}{100}-\text { (1) } \\ \Rightarrow g^{\prime}=\frac{G M}{(R+h)^{2}} \\ \Rightarrow g^{\prime}=\frac{G M}{R^{2}\left(1+\frac{h}{R}\right)^{2}} \\ \Rightarrow g^{\prime}=\frac{g}{\left(1+\frac{h}{R}\right)^{2}}-\text { (11) }\left[\because \frac{G M}{R^{2}}=g\right] \end{array}

(11) [GMR2=g] \left[\because \frac{G M}{R^{2}}=g\right]

From (1) and (II) we have

(1+hR)2=16%10010016=(1+hR)2104=1+hR64=hR.h=64R=32R.h=32×6300=9450 kmh=9450 km \begin{aligned} & \frac{\not d}{\left(1+\frac{h}{R}\right)^{2}}=\frac{16 \%}{100} \\ \Rightarrow & \frac{100}{16}=\left(1+\frac{h}{R}\right)^{2} \\ \Rightarrow & \frac{10}{4}=1+\frac{h}{R} \\ \Rightarrow & \frac{6}{4}=\frac{h}{R} . \\ \Rightarrow & h=\frac{6}{4} R=\frac{3}{2} R . \\ & h=\frac{3}{2} \times 6300=9450 \mathrm{~km} \\ & h=9450 \mathrm{~km} \end{aligned}

Hence, option (d) is correct

মহাকর্ষীয় বলের সূত্রের ব্যবহার টপিকের ওপরে পরীক্ষা দাও