x tends to infinity সংক্রান্ত
The value of Limx→∞x2+x4x3−1 \operatorname{Lim}_{x \rightarrow \infty} \frac{x^{2}+x}{4 x^{3}-1} Limx→∞4x3−1x2+x is-
∞
1
0
1/4
Ltx→∞x2+x4x3−1=Ltx→∞1x+1x24−1x3=0 \operatorname{Lt}_{x \rightarrow \infty} \frac{x^{2}+x}{4 x^{3}-1}=\operatorname{Lt}_{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{1}{x^{2}}}{4-\frac{1}{x^{3}}}=0 Ltx→∞4x3−1x2+x=Ltx→∞4−x31x1+x21=0
এর সঠিক মান কোনটি?
The values of limn→∞n5+24−n2+13n4+25−n3+12\displaystyle\lim_{n\rightarrow \infty}\dfrac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[5]{n^4+2}-\sqrt[2]{n^3+1}}n→∞lim5n4+2−2n3+14n5+2−3n2+1 is?
If f(x)=x−sinxx+cos2x\displaystyle f(x) = \sqrt {\frac{{x - \sin x}}{{x + {{\cos }^2}x}}} f(x)=x+cos2xx−sinx then limx→∞f(x)\mathop {\lim }\limits_{x \to \infty } f(x)x→∞limf(x) ; is
limx→∞2x2+3x+5(3x2+5x−5 \lim_{x \to ∞} \frac{2 x^{2} + 3 x + 5}{\left ( 3 x^{2} + 5 x - 5 \right.} limx→∞(3x2+5x−52x2+3x+5 এর মান-