লিমিট
the value of limx→0sinαX−sinβXeαX−eβX\underset { x\rightarrow 0 }{ lim } \frac { sin\alpha X-sin\beta X }{ { e }^{ \alpha X }-{ e }^{ \beta X } } x→0limeαX−eβXsinαX−sinβX equals
0
1
-1
α−β\alpha -\beta α−β
limx→2x2−5x+6x2+2x−8 \lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x^{2}+2 x-8} limx→2x2+2x−8x2−5x+6 এর মান নির্ণয় কর।
limx→0+(cosecx)1/logx\displaystyle \lim_{x\rightarrow 0^{+}}{(\cosec x)^{1/\log x}}x→0+lim(cosecx)1/logx=?
If f′f 'f′ (0) = 0 and f(x) is a differentiable and increasing function,then lim x→0 x \rightarrow 0x→0 x.f′(x2)f′(x)\frac {x.f ' (x^2)}{f ' (x)}f′(x)x.f′(x2)
ddx(9x)= \frac{d}{d x}\left(9^{x}\right)= dxd(9x)= কত?