সংযুক্ত ও যৌগিক কোণের ত্রিকোণমিতিক অনুপাত
The value of ∑r=19sin2πr18 is equal to \sum\limits_{r = 1}^9 {{{\sin }^2}\dfrac{{\pi r}}{{18}}} \;is\;equal\;to\;r=1∑9sin218πrisequalto
92\dfrac{9}{2}29
72\dfrac{7}{2}27
5
None of these
∑r=19sin2rπ18=sin2π18+sin22π18+…+sin28π18+sin29π18 As π18+8π18=π2 \begin{array}{l} \sum_{r=1}^{9} \sin ^{2} \frac{r \pi}{18} \\ =\sin ^{2} \frac{\pi}{18}+\sin ^{2} \frac{2 \pi}{18}+\ldots+\sin ^{2} \frac{8 \pi}{18}+\sin ^{2} \frac{9 \pi}{18} \\ \text { As } \frac{\pi}{18}+\frac{8 \pi}{18}=\frac{\pi}{2} \end{array} ∑r=19sin218rπ=sin218π+sin2182π+…+sin2188π+sin2189π As 18π+188π=2π
Similarly,
2π18+7π18=π2 \frac{2 \pi}{18}+\frac{7 \pi}{18}=\frac{\pi}{2} 182π+187π=2π
So,
∑r=19sin2rπ18=sin2π18+sin28π18+sin22π18+sin27π18+sin23π18+sin26π18+sin24π18+sin25π18+sin29π18=(sin2π18+cos2π18)+(sin22π18+cos22π18)+(sin23π18+cos23π18)+(sin24π18+cos24π18)+sin2π2=1+1+1+1+1=5 \begin{array}{l} \sum_{r=1}^{9} \sin ^{2} \frac{r \pi}{18} \\ =\sin ^{2} \frac{\pi}{18}+\sin ^{2} \frac{8 \pi}{18}+\sin ^{2} \frac{2 \pi}{18}+\sin ^{2} \frac{7 \pi}{18} \\ +\sin ^{2} \frac{3 \pi}{18}+\sin ^{2} \frac{6 \pi}{18}+\sin ^{2} \frac{4 \pi}{18}+\sin ^{2} \frac{5 \pi}{18} \\ +\sin ^{2} \frac{9 \pi}{18} \\ =\left(\sin ^{2} \frac{\pi}{18}+\cos ^{2} \frac{\pi}{18}\right)+\left(\sin ^{2} \frac{2 \pi}{18}+\cos ^{2} \frac{2 \pi}{18}\right) \\ +\left(\sin ^{2} \frac{3 \pi}{18}+\cos ^{2} \frac{3 \pi}{18}\right)+\left(\sin ^{2} \frac{4 \pi}{18}+\cos ^{2} \frac{4 \pi}{18}\right) \\ +\sin ^{2} \frac{\pi}{2} \\ =1+1+1+1+1=5 \end{array} ∑r=19sin218rπ=sin218π+sin2188π+sin2182π+sin2187π+sin2183π+sin2186π+sin2184π+sin2185π+sin2189π=(sin218π+cos218π)+(sin2182π+cos2182π)+(sin2183π+cos2183π)+(sin2184π+cos2184π)+sin22π=1+1+1+1+1=5
যদি tanθ=x \tan \theta=x tanθ=x হয়, তবে sin2θ \sin 2 \theta sin2θ এর মান কত?
The number of real solutions of the equation sin(ex)=5x+5−x\sin \left( e ^ { x } \right) = 5 ^ { x } + 5 ^ { - x }sin(ex)=5x+5−x is ____________________.
If sinθ+cosθ=1\sin \theta +\cos \theta =1sinθ+cosθ=1, then the value of sin2θ\sin 2\thetasin2θ is equal to:
If the equation 2cosx+cos2λx=32\cos x+\cos 2\lambda x=32cosx+cos2λx=3 has only one solution then λ\lambda λ is