সংযুক্ত ও যৌগিক কোণের ত্রিকোণমিতিক অনুপাত

The value of r=19sin2πr18  is  equal  to  \sum\limits_{r = 1}^9 {{{\sin }^2}\dfrac{{\pi r}}{{18}}} \;is\;equal\;to\; 

কাজু বাদাম

r=19sin2rπ18=sin2π18+sin22π18++sin28π18+sin29π18 As π18+8π18=π2 \begin{array}{l} \sum_{r=1}^{9} \sin ^{2} \frac{r \pi}{18} \\ =\sin ^{2} \frac{\pi}{18}+\sin ^{2} \frac{2 \pi}{18}+\ldots+\sin ^{2} \frac{8 \pi}{18}+\sin ^{2} \frac{9 \pi}{18} \\ \text { As } \frac{\pi}{18}+\frac{8 \pi}{18}=\frac{\pi}{2} \end{array}

Similarly,

2π18+7π18=π2 \frac{2 \pi}{18}+\frac{7 \pi}{18}=\frac{\pi}{2}

So,

r=19sin2rπ18=sin2π18+sin28π18+sin22π18+sin27π18+sin23π18+sin26π18+sin24π18+sin25π18+sin29π18=(sin2π18+cos2π18)+(sin22π18+cos22π18)+(sin23π18+cos23π18)+(sin24π18+cos24π18)+sin2π2=1+1+1+1+1=5 \begin{array}{l} \sum_{r=1}^{9} \sin ^{2} \frac{r \pi}{18} \\ =\sin ^{2} \frac{\pi}{18}+\sin ^{2} \frac{8 \pi}{18}+\sin ^{2} \frac{2 \pi}{18}+\sin ^{2} \frac{7 \pi}{18} \\ +\sin ^{2} \frac{3 \pi}{18}+\sin ^{2} \frac{6 \pi}{18}+\sin ^{2} \frac{4 \pi}{18}+\sin ^{2} \frac{5 \pi}{18} \\ +\sin ^{2} \frac{9 \pi}{18} \\ =\left(\sin ^{2} \frac{\pi}{18}+\cos ^{2} \frac{\pi}{18}\right)+\left(\sin ^{2} \frac{2 \pi}{18}+\cos ^{2} \frac{2 \pi}{18}\right) \\ +\left(\sin ^{2} \frac{3 \pi}{18}+\cos ^{2} \frac{3 \pi}{18}\right)+\left(\sin ^{2} \frac{4 \pi}{18}+\cos ^{2} \frac{4 \pi}{18}\right) \\ +\sin ^{2} \frac{\pi}{2} \\ =1+1+1+1+1=5 \end{array}

সংযুক্ত ও যৌগিক কোণের ত্রিকোণমিতিক অনুপাত টপিকের ওপরে পরীক্ষা দাও