সম্ভাবনার সাধারণ সমস্যা

Three numbers are chosen at random without replacement from 1,2,....10{1,2,....10} . The probability that the minimum of the chosen numbers is 33, or their maximum is 77 is ..............

কাজু বাদাম

Let A and B denote the following events:
A:minimum of the chosen number is 3
B: maximum of the chosen number is 7
We have,
P(A)=PP(A)=P(choosing 3 and two other numbers from 4 to 10)
=7C210C3=7×62×3×210×9×8=740=\cfrac { ^{ 7 }{ { C }_{ 2 } } }{ ^{ 10 }{ { C }_{ 3 } } } =\cfrac { 7\times 6 }{ 2 } \times \cfrac { 3\times 2 }{ 10\times 9\times 8 } =\cfrac { 7 }{ 40 }
P(B)=PP(B)=P(choosing 7 and two other numbers from 1 to 6)
=6C210C3=6×52×3×210×9×8=18=\cfrac { ^{ 6 }{ { C }_{ 2 } } }{ ^{ 10 }{ { C }_{ 3 } } } =\cfrac { 6\times 5 }{ 2 } \times \cfrac { 3\times 2 }{ 10\times 9\times 8 } =\cfrac { 1 }{ 8 }
P(AB)=PP\left( A\cap B \right) =P(Choosing 3 and 7 and one other number from 4 to 6)
=310C3=3×3×210×9×8=140=\cfrac { 3 }{ ^{ 10 }{ { C }_{ 3 } } } =\cfrac { 3\times 3\times 2 }{ 10\times 9\times 8 } =\cfrac { 1 }{ 40 }
Now P(AB)=P(A)+P(B)P(AB)=740+18140=1140P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A\cap B \right) \\ =\cfrac { 7 }{ 40 } +\cfrac { 1 }{ 8 } -\cfrac { 1 }{ 40 } =\cfrac { 11 }{ 40 }

সম্ভাবনার সাধারণ সমস্যা টপিকের ওপরে পরীক্ষা দাও