সরল দোলন গতি

Two simple harmonic motions are represented by the equations

y1=0.1sin(100πt+π3)y_1 = 0.1 sin (100 \pi t + \frac{\pi}{3}) and y2=0.1cosπt y_2 = 0.1 cos \pi t .

The phase difference of the velocity of particle 1, with respect to the velocity of particle 2 is ;

হানি নাটস

Given equations of wave are :

y1=0.1sin(100πt+π/3)y2=0.1cosπt=0.1sin(π/2+πt)=0.1sin(πt+π/2) \begin{array}{l} y_{1}=0.1 \sin (100 \pi t+\pi / 3) \\ y_{2}=0.1 \cos \pi t=0.1 \sin (\pi / 2+\pi t)=0.1 \sin (\pi t+\pi / 2) \end{array}

Now, to find the velocity of the particle, differentiate both equations with respect to time.

dy1/dt=v1=0.1×100πcos(100πt+π/3)=10πcos(100πt+π/3) \mathrm{dy}_{1} / \mathrm{dt}=\mathrm{v}_{1}=0.1 \times 100 \pi \cos (100 \pi t+\pi / 3)=10 \pi \cos (100 \pi t+\pi / 3)

similarly for 2nd equation,

dy2/dt=v2=0.1×πcos(πt+Π/2)=0.1πcos(πt+π/2) \mathrm{dy}_{2} / \mathrm{dt}=\mathrm{v}_{2}=0.1 \times \pi \cos (\pi \mathrm{t}+\Pi / 2)=0.1 \pi \cos (\pi \mathrm{t}+\pi / 2)

We know,

if equation x=Asin(ωt+Φ) x=A \sin (\omega t+\Phi) is given then, at t=0 t=0 phase of motion is Φ \Phi

Similarly at t=0 t=0 phase of 1 st particle velocity is π/3 \pi / 3 at t=0 t=0 , phase of velocity of 2 nd particle is π/2 \pi / 2

Now, phase difference = = phase of 1 st particle at t=0 t=0 - phase of 2 nd particle at t=0 \mathrm{t}=0

=π/3π/2=π/6 =\pi / 3-\pi / 2=-\pi / 6

সরল দোলন গতি টপিকের ওপরে পরীক্ষা দাও