লঘুমান গুরুমান বিষয়ক

Verify Rolle's theorem for the function f(x)=10xx2\displaystyle f(x)=10x-x^{2} in the interval ;[0,10]

হানি নাটস

f(x)=10xx2[0,10]f\left( x \right) =10x-{ x }^{ 2 }\quad \quad \left[ 0,10 \right]
10xx210x-{ x }^{ 2 } is continuous in [0,10]\left[ 0,10 \right] since it is polynomial function.
f(x)=102xf'\left( x \right) =10-2x is defined for all values of x in (0,10)(0,10)
f(x)\Rightarrow f\left( x \right) is differentiable on (0,10)(0,10)
f(0)=f(10)=0f\left( 0 \right) =f\left( 10 \right) =0
\therefore There exists a c,acbc,a\le c\le b
0c100\le c\le 10
Such that
f(c)=0f'\left( c \right) =0
102x=010-2x=0
x=5x=5 55 lies in [0,10]\left[ 0,10 \right]

লঘুমান গুরুমান বিষয়ক টপিকের ওপরে পরীক্ষা দাও