যোগাশ্রয়ী প্রোগ্রাম

Which of the following points lie in the solution set?

হানি নাটস

By option verification,
i.e., substituting the options in given linear inequations and verifying

Given, 2x+3y>22x+3y>2
xy<0x-y<0
y0y\geq 0
x3x\leq 3

substituting option A (i.e.,) (x,y)=(1,1)(x,y)=(1,1)
2x+3y>2    2×1+3×1>2    5>22x+3y>2\implies 2\times 1+3\times 1>2 \implies 5>2 True
xy<0    11<0    0<0x-y<0 \implies 1-1<0 \implies 0<0 False
y0    10y\geq 0 \implies 1\geq 0 True
x3    13x\leq 3 \implies 1\leq 3 True

substituting option B (i.e.,) (x,y)=(1,2)(x,y)=(1,2)
2x+3y>2    2×1+3×2>2    8>22x+3y>2\implies 2\times 1+3\times 2>2 \implies 8>2 True
xy<0    12<0    1<0x-y<0 \implies 1-2<0 \implies -1<0 True
y0    20y\geq 0 \implies 2\geq 0 True
x3    13x\leq 3 \implies 1\leq 3 True

substituting option C (i.e.,) (x,y)=(2,1)(x,y)=(2,1)
2x+3y>2    2×2+3×1>2    7>22x+3y>2\implies 2\times 2+3\times 1>2 \implies 7>2 True
xy<0    21<0    1<0x-y<0 \implies 2-1<0 \implies 1<0 False
y0    10y\geq 0 \implies 1\geq 0 True
x3    23x\leq 3 \implies 2\leq 3 True

substituting option D (i.e.,) (x,y)=(3,2)(x,y)=(3,2)
2x+3y>2    2×3+3×2>2    12>22x+3y>2\implies 2\times 3+3\times 2>2 \implies 12>2 True
xy<0    32<0    1<0x-y<0 \implies 3-2<0 \implies 1<0 False
y0    20y\geq 0 \implies 2\geq 0 True
x3    33x\leq 3 \implies 3\leq 3 True

Therefore option B satisfies the above linear inequalities.

যোগাশ্রয়ী প্রোগ্রাম টপিকের ওপরে পরীক্ষা দাও