বিপরীত ফাংশন ও পরামিতিক ফাংশনের অন্তরজ
y=sin−1[4x1+4x] y = \sin^{- 1}{\left [ \frac{4 \sqrt{x}}{1 + 4 x} \right ]} y=sin−1[1+4x4x] হলে, (dydx)((4,2) \left ( \frac{dy}{dx} \right )_{\left ( \left ( 4 , 2 \right ) \right.} (dxdy)((4,2) এর মান কত?
4
1/9
−117-\frac{1}{17} −171
কোনটিই নয়
প্রদত্ত:
y=sin−1(4x1+4x) y=\sin ^{-1}\left(\frac{4 \sqrt{x}}{1+4 x}\right) y=sin−1(1+4x4x)
প্রতিস্থাপন
x=tanθ⟹x=tan2θ4x1+4x=4tanθ1+4tan2θ=2sin2θ1+sin22θ \begin{array}{c} \sqrt{x}=\tan \theta \Longrightarrow x=\tan ^{2} \theta \\ \frac{4 \sqrt{x}}{1+4 x}=\frac{4 \tan \theta}{1+4 \tan ^{2} \theta}=\frac{2 \sin 2 \theta}{1+\sin ^{2} 2 \theta} \end{array} x=tanθ⟹x=tan2θ1+4x4x=1+4tan2θ4tanθ=1+sin22θ2sin2θ
ডেরিভেটিভ
dydx=11−(4x1+4x)2⋅ddx(4x1+4x) \frac{d y}{d x}=\frac{1}{\sqrt{1-\left(\frac{4 \sqrt{x}}{1+4 x}\right)^{2}}} \cdot \frac{d}{d x}\left(\frac{4 \sqrt{x}}{1+4 x}\right) dxdy=1−(1+4x4x)21⋅dxd(1+4x4x)
ভগ্নাংশের ডেরিভেটিভ
ddx(4x1+4x)=(1+4x)⋅2x−4x⋅4(1+4x)2=2(1+4x)−16xx(1+4x)2=2−8xx(1+4x)2 \frac{d}{d x}\left(\frac{4 \sqrt{x}}{1+4 x}\right)=\frac{(1+4 x) \cdot \frac{2}{\sqrt{x}}-4 \sqrt{x} \cdot 4}{(1+4 x)^{2}}=\frac{2(1+4 x)-16 x}{\sqrt{x}(1+4 x)^{2}}=\frac{2-8 x}{\sqrt{x}(1+4 x)^{2}} dxd(1+4x4x)=(1+4x)2(1+4x)⋅x2−4x⋅4=x(1+4x)22(1+4x)−16x=x(1+4x)22−8x
বিন্দুতে মান (x=4) (x=4) (x=4)
dydx∣x−4=11−(817)2⋅2−322⋅289=1715⋅−30578=−117 \left.\frac{d y}{d x}\right|_{x-4}=\frac{1}{\sqrt{1-\left(\frac{8}{17}\right)^{2}}} \cdot \frac{2-32}{2 \cdot 289}=\frac{17}{15} \cdot \frac{-30}{578}=-\frac{1}{17} dxdyx−4=1−(178)21⋅2⋅2892−32=1517⋅578−30=−171
If u=f(x2),v=g(x3),f(x)=sinx,g1(x)=cosxu=f(x^{2}), v=g(x^{3}),f(x)=\sin x, g^{1}(x)=\cos xu=f(x2),v=g(x3),f(x)=sinx,g1(x)=cosx then find dudv\frac{du}{dv}dvdu
x=a(θ-sinθ), y=a(1-cosθ) হলে -
নিচের কোনটি সঠিক?
x= at2 এবং y=2at
dydx∣t=1 \frac{dy}{dx} |_{t = 1} dxdy∣t=1 এর মান কত ?
y=cos−1(1−tan2θ1+tan2θ) y = \cos^{- 1}{\left ( \frac{1 - \tan^{2}{\theta}}{1 + \tan^{2}{\theta}} \right )} y=cos−1(1+tan2θ1−tan2θ) হলে dydθ \frac{dy}{d \theta} dθdy এর মান কত?