ত্রিকোনমিতিক ফাংশনের অন্তরজ
y=sin(1x) y = \sin{\left ( \frac{1}{x} \right )} y=sin(x1) হলে dydx \frac{dy}{dx} dxdy এর মান-
নিচের কোনটি সঠিক?
ii,iii
i,ii
i,iii
i,ii,iii
y=ln(cosx) y=\ln (\cos x) y=ln(cosx) হলে, dydx \frac{d y}{d x} dxdy এর মান কত?
If the prime sign (') represents differentiation w.r.t. xxx and f′=sinx+sin4x.cosxf^{'}=\sin x+\sin 4x.\cos xf′=sinx+sin4x.cosx, then f′(2x2+π2)f^{'}\left ( 2x^{2}+\cfrac{\pi }{2} \right )f′(2x2+2π) at x=π2x=\sqrt{\dfrac{\pi }{2}}x=2π is equal to
If cos4θx+sin4θy=1x+y\displaystyle \frac { \cos ^{ 4 }{ \theta } }{ x } +\frac { \sin ^{ 4 }{ \theta } }{ y } =\frac { 1 }{ x+y } xcos4θ+ysin4θ=x+y1 then dydx=\displaystyle \frac { dy }{ dx } =dxdy=
For nϵNn\epsilon NnϵN, let f(x)=min {1−tannx,1−sinnx,1−xn}f\left ( x \right )=min\:\left \{ 1-\tan ^{n}x, 1-\sin ^{n}x, 1-x^{n} \right \}f(x)=min{1−tannx,1−sinnx,1−xn}, xϵ(−π2,π2)x\epsilon \left ( -\cfrac {\pi}{2}, \cfrac {\pi}{2} \right )xϵ(−2π,2π). The left hand derivative of fff at x=π4x=\cfrac {\pi}{4}x=4π is