গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule

y=f(x)y=f(x) is

হানি নাটস

f(x)=x2+0xetf(xt)dt=x2+0xe(xt)f(x(xt))dt=x2+ex0xetf(t)dt\begin{aligned}f(x)=& x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t \\=& x^{2}+\int_{0}^{x} e^{-(x-t)} f(x-(x-t)) d t \\&=x^{2}+e^{-x} \int_{0}^{x} e^{t} f(t) d t\end{aligned}

Differentiating w.r.t. x,x, we get

f(x)=2xex0xetf(t)dt+exexf(x)=2xex0xetf(t)dt+f(x)\begin{aligned}\Rightarrow f^{\prime}(x)=& 2 x-e^{-x} \int_{0}^{x} e^{t} f(t) d t+e^{-x} \cdot e^{x} f(x) \\&=2 x-e^{-x} \int_{0}^{x} e^{t} f(t) d t+f(x)\end{aligned}

f(x)=2x+x2\Rightarrow f^{\prime}(x)=2 x+x^{2} \\

f(x)=x33+x2+c\Rightarrow f(x)=\dfrac{x^{3}}{3}+x^{2}+c\\

Also f(0)=0f(0)=0\\ [using equation from equation]

f(x)=x33+x2\Rightarrow f(x)=\dfrac{x^{3}}{3}+x^{2} \\

f(x)=x2+2x\Rightarrow f^{\prime}(x)=x^{2}+2 x\\

f(x)=0\Rightarrow f^{\prime}(x)=0 has real roots, hence f(x)f^{\prime}(x) is non-monotonic

Hence, f(x)f(x) is many-one, but range is RR, hence surjective.

গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule টপিকের ওপরে পরীক্ষা দাও