y=f(x) is
হানি নাটস
f(x)==x2+∫0xe−tf(x−t)dtx2+∫0xe−(x−t)f(x−(x−t))dt=x2+e−x∫0xetf(t)dt
Differentiating w.r.t. x, we get
⇒f′(x)=2x−e−x∫0xetf(t)dt+e−x⋅exf(x)=2x−e−x∫0xetf(t)dt+f(x)
⇒f′(x)=2x+x2
⇒f(x)=3x3+x2+c
Also f(0)=0 [using equation from equation]
⇒f(x)=3x3+x2
⇒f′(x)=x2+2x
⇒f′(x)=0 has real roots, hence f′(x) is non-monotonic
Hence, f(x) is many-one, but range is R, hence surjective.