প্রতিসম মূল সংক্রান্ত
দ্বিঘাত সমীকরণের একটি মূল 11+−3\frac{1}{1+\sqrt{-3}}1+−31 হলে সমীকরণটি হবে-
4x2−2x+1=04x^2-2x+1=04x2−2x+1=0
10x2−2x+1=010x^2-2x+1=010x2−2x+1=0
2x2−4x+1=02x^2-4x+1=02x2−4x+1=0
2x2+4x+1=02x^2+4x+1=02x2+4x+1=0
11+−3=11+3i=1(1−3i)(1+3i)(1−3i)=1−3i1−3i+3i−3i2=1−3i1−3i2=1−3i1+3=1−3i4=14−34i \begin{aligned} & \frac{1}{1+\sqrt{-3}} \\ = & \frac{1}{1+\sqrt{3} i} \\ = & \frac{1(1-\sqrt{3} i)}{(1+\sqrt{3} i)(1-\sqrt{3} i)} \\ = & \frac{1-\sqrt{3} i}{1-\sqrt{3} i+\sqrt{3} i-3 i^{2}} \\ = & \frac{1-\sqrt{3} i}{1-3 i^{2}} \\ = & \frac{1-\sqrt{3} i}{1+3} \\ = & \frac{1-\sqrt{3} i}{4} \\ = & \frac{1}{4}-\frac{\sqrt{3}}{4} i \end{aligned} =======1+−311+3i1(1+3i)(1−3i)1(1−3i)1−3i+3i−3i21−3i1−3i21−3i1+31−3i41−3i41−43i
অন্যমূলটি 14+34i \frac{1}{4}+\frac{\sqrt{3}}{4} i 41+43i
আমরা জানি,
x2− x^{2}- x2− (মূল এর যোগফল) + মূলের গুনফল = 0
=x2−(14+34i+14−34i)x+(14+34)(14−34i)=x2−(14+14)x+116−316i2=0=x2−(1+14)x+116+316=0=x2−24x+1+316=0=x2−12x+416=0 \begin{array}{l}=x^{2}-\left(\frac{1}{4}+\frac{\sqrt{3}}{4} i+\frac{1}{4}-\frac{\sqrt{3}}{4} i\right) x+\left(\frac{1}{4}+\frac{\sqrt{3}}{4}\right)\left(\frac{1}{4}-\frac{\sqrt{3}}{4} i\right) \\ =x^{2}-\left(\frac{1}{4}+\frac{1}{4}\right) x+\frac{1}{16}-\frac{3}{16} i^{2}=0 \\ =x^{2}-\left(\frac{1+1}{4}\right) x+\frac{1}{16}+\frac{3}{16}=0 \\ =x^{2}-\frac{2}{4} x+\frac{1+3}{16}=0 \\ =x^{2}-\frac{1}{2} x+\frac{4}{16}=0 \\\end{array} =x2−(41+43i+41−43i)x+(41+43)(41−43i)=x2−(41+41)x+161−163i2=0=x2−(41+1)x+161+163=0=x2−42x+161+3=0=x2−21x+164=0
x2−12x+14=04x2−42x+1=04x2−2x+1=0 \begin{array}{l}x^{2}-\frac{1}{2} x+\frac{1}{4}=0 \\ 4 x^{2}-\frac{4}{2} x+1=0 \\ 4 x^{2}-2 x+1=0\end{array} x2−21x+41=04x2−24x+1=04x2−2x+1=0
If the roots of the equation (4-k)x²+26kx+5= 0 are inverse of each other then find the value of k?
3x2−9x−5=03x^2-9x-5=03x2−9x−5=0সমীকরণের মূলদ্বয়ের যোগফল কত?
x2+px+q=0 x^{2}+p x+q=0 x2+px+q=0 সমীকরণের মুলদ্বয়ের পার্থক্য 1 হলে প্রমাণ কর যে, p2+4q2=(1+2q)2 p^{2}+4 q^{2}=(1+2 q)^{2} p2+4q2=(1+2q)2
x3−px2+qx−r=0 x^{3}-\mathrm{p} x^{2}+\mathrm{q} x-\mathrm{r}=0 x3−px2+qx−r=0 সমীকরণের মূলগুলো α,β,γ \alpha, \beta, \gamma α,β,γ হলে মান নির্ণয় করঃ ∑1α2 \sum \frac{1}{\alpha^{2}} ∑α21