তাপীয় সূত্র

A 4.2g lead bullet moving at 275ms-1 strikes a steel plate and stops. If all its kinetic energy is coverted to thermal energy and none leaves the bullet, what is its temperature change? [Specific heat of lead is 130 j/kgoC]

IUT 14-15

The kinetic energy of the bullet is given by:

KE=12mv2 K E=\frac{1}{2} m v^{2}

Where:

- m=4.2g=0.0042 kg m=4.2 g=0.0042 \mathrm{~kg} (mass of the bullet)

- v=275 m/s v=275 \mathrm{~m} / \mathrm{s} (initial velocity of the bullet)

KE=12×0.0042×(275)2KE=0.0021×75625KE=158.8 J \begin{array}{c} K E=\frac{1}{2} \times 0.0042 \times(275)^{2} \\ K E=0.0021 \times 75625 \\ K E=158.8 \mathrm{~J} \end{array}

The heat energy gained by the bullet is:

Q=mcΔT Q=m c \Delta T

Where:

- Q=158.8 J Q=158.8 \mathrm{~J} (from KE calculation)

- c=130 J/kgC \quad c=130 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} (specific heat capacity of lead)

- m=0.0042 kg m=0.0042 \mathrm{~kg}

- ΔT= \Delta T= temperature change

Rearranging for ΔT \Delta T :

ΔT=QmcΔT=158.80.0042×130ΔT=158.80.546ΔT291C \begin{array}{c} \Delta T=\frac{Q}{m c} \\ \Delta T=\frac{158.8}{0.0042 \times 130} \\ \Delta T=\frac{158.8}{0.546} \\ \Delta T \approx 291^{\circ} \mathrm{C} \end{array}

তাপীয় সূত্র টপিকের ওপরে পরীক্ষা দাও