কনিক নির্ণয়

f(mi,1mi)f(\displaystyle \mathrm{m}_{\mathrm{i}}, \frac{1}{\mathrm{m}_{\mathrm{i}}}) , i=1,2,3,4\mathrm{i}=1,2,3,4 are four distinct points on the circle with centre origin, then value of m1m2m3m4\mathrm{m}_{1}\mathrm{m}_{2}\mathrm{m}_{3}\mathrm{m}_{4} is equal to

কাজু বাদাম

Equation of circle having centre of origin (0,0)(0,0) and radius =r=r,

S1;x2+y2=r2(1)S_{1};x^{2}+y^{2}=r^{2}----(1)

f(m1,1m2),f(m2,1m2),f(m4,1m4)\therefore f(m_{1},\dfrac{1}{m_{2}}),f(m_{2},\dfrac{1}{m_{2}}),--f(m_{4},\dfrac{1}{m_{4}})

These points lie on S1S_{1}.

Let f(m,1m)\displaystyle f(m, \frac{1}{m}) is point lie on S_{1},

m2+1m2=r2m^{2}+\dfrac{1}{m^{2}}=r^{2}

m4+1r2m2=0m^{4}+1-r^{2}m^{2}=0

m41r2m2+1=0m^{4}-1-r^{2}m^{2}+1=0

m1,m2,m3m_{1},m_{2},m_{3} and m4m_{4} are roots of this equation

So, m1m2m3m4=1m_{1}m_{2}m_{3}m_{4} =1

কনিক নির্ণয় টপিকের ওপরে পরীক্ষা দাও