Find 'c' of the mean value theorem, if f(x)=x(x−1)(x−2);a=0,b=1/2
হানি নাটস
We have f(a)=f(0)=0 and f(b)=f(21)=83
∴b−af(b)−f(a)=21−083−0=43
Now
f(x)=x3−3x2+2x⇒f′(x)=3x2−6x+2⇒f′(c)=3c2−6c+2
Putting all these value in lagrange's mean value theorem
b−af(b)−f(a)=f′(c),(a<c,b)
We get 43=3c2−6c+2⇒c=1±621
Hence c=61−21 lies in the open interval (0,21)
Therefore it is the required value