অন্তরীকরণ এর অন্যান্য

Find 'c' of the mean value theorem, if f(x)=x(x1)(x2);a=0,b=1/2\displaystyle f(x)=x(x-1)(x-2);a=0, b=1/2

হানি নাটস

We have f(a)=f(0)=0f\left( a \right) =f\left( 0 \right) =0 and f(b)=f(12)=38\displaystyle f\left( b \right) =f\left( \frac { 1 }{ 2 } \right) =\frac { 3 }{ 8 }

f(b)f(a)ba=380120=34\displaystyle \therefore \frac { f\left( b \right) -f\left( a \right) }{ b-a } =\frac { \frac { 3 }{ 8 } -0 }{ \frac { 1 }{ 2 } -0 } =\frac { 3 }{ 4 }

Now

f(x)=x33x2+2xf(x)=3x26x+2f(c)=3c26c+2f\left( x \right) ={ x }^{ 3 }-3{ x }^{ 2 }+2x\\ \Rightarrow f'\left( x \right) ={ 3x }^{ 2 }-6x+2\\ \Rightarrow f'\left( c \right) ={ 3c }^{ 2 }-6c+2

Putting all these value in lagrange's mean value theorem

f(b)f(a)ba=f(c),(a<c,b)\displaystyle \frac { f\left( b \right) -f\left( a \right) }{ b-a } =f'\left( c \right) ,\left( a<c,b \right)

We get 34=3c26c+2c=1±216\displaystyle \frac { 3 }{ 4 } ={ 3c }^{ 2 }-6c+2\Rightarrow c=1\pm \frac { \sqrt { 21 } }{ 6 }

Hence c=1216\displaystyle c=\frac { 1-\sqrt { 21 } }{ 6 } lies in the open interval (0,12)\displaystyle \left( 0,\frac { 1 }{ 2 } \right)

Therefore it is the required value

অন্তরীকরণ এর অন্যান্য টপিকের ওপরে পরীক্ষা দাও