For ∣z−1∣=1, find tan [arg((2−2zi)(z−1))].
হানি নাটস
Let ;z=x+iy
Hence,& ;∣z−1∣=1
(x−1)2+y2=1
Hence by using parametric equation of circle.
x−1=cosθ
x=1+cosθ and
y=sinθ
Then, z=(1+cosθ)+isinθ
Let θ=2π
Then, z=1+i ...(i)
Hence, z−1=i and
2−2iz1
=2(1−1+ii)
=2(1+i1+i−i)
=1+i2
=1−i...(ii)
Hence, 2−z2iz−1
=1−ii
=2i(1+i)
=2i−1
=21(2−1+i)
=21.ei43π
Hence, tan(43π)
=−1.