নতি (Argument)

For z1=1\left|z - 1\right| = 1, find tan [arg((z1)(22iz))].[arg(\dfrac{(z -1)}{(2 - 2 \frac{i}{z})})].

হানি নাটস

Let ;z=x+iyz=x+iy

Hence,& ;z1=1|z-1|=1

(x1)2+y2=1(x-1)^{2}+y^{2}=1

Hence by using parametric equation of circle.

x1=cosθx-1=cos\theta

x=1+cosθx=1+cos\theta and 

y=sinθy=sin\theta

Then, z=(1+cosθ)+isinθz=(1+cos\theta)+isin\theta

Let  θ=π2\theta=\frac{\pi}{2}

Then, z=1+iz=1+i ...(i)

Hence, z1=iz-1=i and 

22i1z2-2i\dfrac{1}{z}

=2(1i1+i)=2(1-\dfrac{i}{1+i})

=2(1+ii1+i)=2(\dfrac{1+i-i}{1+i})

=21+i=\dfrac{2}{1+i}

=1i=1-i...(ii)

Hence, z122iz\dfrac{z-1}{2-\dfrac{2i}{z}}

=i1i=\dfrac{i}{1-i}

=i(1+i)2=\dfrac{i(1+i)}{2}

=i12=\dfrac{i-1}{2}

=12(1+i2)=\dfrac{1}{\sqrt{2}}(\dfrac{-1+i}{\sqrt{2}})

=12.ei3π4=\dfrac{1}{\sqrt{2}}.e^{i\frac{3\pi}{4}}

Hence, tan(3π4)tan(\frac{3\pi}{4})

=1=-1.

নতি (Argument) টপিকের ওপরে পরীক্ষা দাও