For nϵN, let f(x)=min{1−tannx,1−sinnx,1−xn}, xϵ(−2π,2π). The left hand derivative of f at x=4π is
হানি নাটস
Given, f(x)=min{1−tannx,1−sinnx,1−xn}
For x∈(0,4π), we have
tanx>x>sinx
⇒1−tannx<1−xn<1−sinnx
⇒f(x)=1−tannx
So, f(4π)=min{0,1−(21)n,1−(4π)n}
⇒f(4π)=0
Now, f′(4π−)=h→0−limhf(4π+h)−f(4π)
=h→0−limh1−tann(4π+h)
=h→0−limh1−(1−tanh1+tanh)n
=h→0−limh(1−tanh)n(1−tanh)n−(1+tanh)n
=h→0−limh(1−ntanh+2n(n−1)tan2h+....)−2[ntanh+2n(n−1)tan3h+.....]
As, h→0limtanh=0
So, using this result , we get
=h→0−limh−2ntanh
=−2n (h→0limhtanh=1)