অধিবৃত্ত

If 5x+9=05x+9=0 is the directrix of the hyperbola 16x29y2=14416{x}^{2}-9{y}^{2}=144, then its correponding focus is:

Admission_Weekly_25

Step 1 : Convert the given equation of hyperbola in parametric form\textbf{Step 1 : Convert the given equation of hyperbola in parametric form} Given:16x29y2=144Given : \,16x^2-9y^2=144

    16x21449y2144=1\implies \,\cfrac{16x^2}{144}-\cfrac{9y^2}{144}=1

    x29y216=1...(i)\implies \,\cfrac{x^2}{9}-\cfrac{y^2}{16}=1\,\qquad\qquad...(i)

    a2=9    a=3,b2=16...(ii)\implies a^2=9\,\implies a=3\quad ,b^2=16\qquad\qquad ...(ii)

Step 2 : Write equation of directrix in standard form\textbf{Step 2 : Write equation of directrix in standard form}

Equation of directrix to the hyperbola x2a2y2b2=1is\textbf{Equation of directrix to the hyperbola }\,\boldsymbol{\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1 \,\textbf{is}}

x±ae=0\boldsymbol{x\pm\cfrac a e=0}

Given equation of a directrix is\text{Given equation of a directrix is}

5x+9=05x+9=0 dividing by 5 on both sides,\text{dividing by 5 on both sides,}     x+95=0\implies x+\cfrac 9 5=0

a=3,...[fromeqn(ii)]\because a=3,\qquad\qquad...[from\,eq^n \,(ii)]

    x+353=0\implies x+\cfrac {3} {\cfrac 5 3}=0

e=53 and directrix lies in left side of hyperbola.\therefore e=\cfrac 5 3 \,\text{ and directrix lies in left side of hyperbola.} Hence corresponding focus will be at negative Xaxis.\text{Hence corresponding focus will be at negative }X-axis. focus is at (ae,0)(3)×53(5,0)\therefore \textbf{focus is at } \boldsymbol{(-ae,0)}\equiv (-3)\times \cfrac 53\equiv (-5, 0)

The focus corresponding to the directrix 5x+9=0is at (5,0).\therefore \textbf{The focus corresponding to the directrix }\,\boldsymbol{5x+9=0\,\textbf{is at }\,(-5, 0) .}

Hence, option C is correct .\textbf{Hence, option C is correct .}

অধিবৃত্ত টপিকের ওপরে পরীক্ষা দাও