নিশ্চায়ক সংক্রান্ত

If a,b,c,rRa,b,c,r \in R, then the equation (x2+ax3b)(x2cx+b)(x2dx+2b)=0(x^2+ax-3b)(x^2-cx+b)(x^2-dx+2b)=0 has

হানি নাটস

Given equation : [x2+ax3b][x2cx+b][x2dx+2b]=0[x^2 + ax - 3b] [x^2 - cx + b][x^2 - dx + 2b] = 0

For x2+ax3b=0x^2 + ax - 3b = 0
Discriminant, D=a2+12bD = a^2 + 12 b
For x2cx+b=0x^2 - cx + b = 0
Discriminant, D=c24bD = c^2 - 4b
For x2dx+2b=0x^2 - dx + 2b = 0
Discriminant, D=d2+8bD = d^2 + 8b
Let us assume that x2+ax3bx^2 + ax - 3b has imaginary roots, then,
a2+12b<0a^2 + 12b < 0
b<a2/12b < -a^2 /12
this implies b is negative, then 4b-4b will be positive
so,
c24b>0c^2 - 4b > 0
x2cx+b=0x^2 - cx + b = 0 has real roots.
Therefore, (x2+ax3b)(x2cx+b)(x2dx2b)=0(x^2 + ax - 3b)(x^2 - cx + b)(x^2 - dx - 2b) = 0 has at least 2 real roots.

নিশ্চায়ক সংক্রান্ত টপিকের ওপরে পরীক্ষা দাও