নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স
If Δ=∣cosθ/2111cosθ/2−cosθ/2−cosθ/21−1∣\Delta =\begin{vmatrix} \cos \theta /2 & 1 & 1\\ 1 & \cos \theta /2 & -\cos \theta /2\\ -\cos \theta /2 & 1 & -1 \end{vmatrix}Δ=cosθ/21−cosθ/21cosθ/211−cosθ/2−1, If the minimun of Δ\Delta Δ is m1m_{1}m1 and maximum of Δ\Delta Δ is m2m_{2}m2, then [m1,m2]\left [ m_{1}, m_{2} \right ][m1,m2] are related
[-4, -2]
[2, 4]
[-4, 0]
[0, 2]
Δ=∣cos;θ/2111cosθ/2−cosθ/2−cosθ/21−1∣\Delta =\begin{vmatrix} \cos ;\theta /2 & 1 & 1 \\ 1 & \cos\theta /2 & -\cos\theta /2 \\ -\cos\theta /2 & 1 & -1 \end{vmatrix}Δ=cos;θ/21−cosθ/21cosθ/211−cosθ/2−1
=−1(−1−cos2θ/2)+1(1+cos2θ/2)=-1(-1-\cos ^{ 2 }{ \theta /2 } )+1(1+\cos ^{ 2 }{ \theta /2 } )=−1(−1−cos2θ/2)+1(1+cos2θ/2)
=2+2cos2θ/2=2+2\cos ^{ 2 }{ \theta /2 } =2+2cos2θ/2
=3+cosθ=3+\cos\theta=3+cosθ
Now, ∵−1≤cosθ≤1\because -1\le \cos\theta \le 1∵−1≤cosθ≤1
⇒2≤3+cosθ≤4\Rightarrow 2\le 3+\cos\theta \le 4⇒2≤3+cosθ≤4
Hence, m1=2,m2=4m_{1}=2,m_{2}=4m1=2,m2=4
If the points (2,5),(4,6)(2,5),(4,6)(2,5),(4,6) and (a,a)(a,a)(a,a) are collinear, then the value of aaa is equal to
∣1−122−21−34−5∣ \left \lvert \begin{matrix} 1 & - 1 & 2 \\ 2 & - 2 & 1 \\ - 3 & 4 & - 5 \end{matrix} \right \rvert 12−3−1−2421−5 এ (3, 1) তম ভুক্তির সহগুণক কত?
Three digits numbers 7x,36y 7x,36y7x,36y and 12z12z12z where x,y,zx , y , zx,y,z are integers from 000 to 9,9 ,9, are divisible by a fixed constant k.k.k. Then the determinant ∣x3176z1y2∣\left| \begin{array} { l l l } { x } & { 3 } & { 1 } \\ { 7 } & { 6 } & { z } \\ { 1 } & { y } & { 2 } \end{array} \right|x7136y1z2 +48\ +48 +48 must be divisible by
K \mathrm{K} K এর কোন মানের জন্য [K+133K−1] \left[\begin{array}{cc}K+1 & 3 \\ 3 & K-1\end{array}\right] [K+133K−1] ম্যাট্রিক্সটি বিপরীতযোগ্য নয়?