স্পর্শক ও অভিলম্ব বিষয়ক

If equation of normal at a point ;(m2,m3)\displaystyle \left ( m^{2},-m^{3} \right ) on the curve& ;x3y2=0isy=3mx4m3\displaystyle x^{3}-y^{2}=0\: \: is\: \: y=3mx-4m^{3} then m2\displaystyle m^{2} equals

হানি নাটস

x3y2=0\displaystyle x^{3}-y^{2}=0

3x22y(dydx)=0\Rightarrow \displaystyle 3x^{2}-2y\left ( \frac{dy}{dx} \right )=0

3x2=2y(dydx)\Rightarrow \displaystyle 3x^{2}=2y\left ( \frac{dy}{dx} \right )

3x22y=dydx\Rightarrow \displaystyle \frac{3x^{2}}{2y}=\frac{dy}{dx}

(dydx)(m2,m3)=3×m42×m3\Rightarrow \displaystyle \left ( \frac{dy}{dx} \right )_{\left ( m^{2},-m^{3} \right )}=\frac{3\times m^{4}}{-2\times m^{3}}

(dxdy)=23m\therefore \displaystyle -\left ( \frac{dx}{dy} \right )=\frac{2}{3m}

Therefore, equation of normal at given point is,

(y+m3)=23m(xm2)\Rightarrow \displaystyle \left ( y+m^{3} \right )=\frac{2}{3m}\left ( x-m^{2} \right )

3my+3m4=2x2m2\Rightarrow \displaystyle 3my+3m^{4}=2x-2m^{2}

3my=2x3m42m2\Rightarrow \displaystyle 3my=2x-3m^{4}-2m^{2}

y=2x3mm323m..(1)\Rightarrow \displaystyle y=\frac{2x}{3m}-m^{3}-\frac{2}{3}m ..(1)

but given equation of normal is, y=3mx4m3..(2)\displaystyle y=3mx-4m^{3} ..(2)

Thus comparing (1) and (2), we get

3m=23m\displaystyle 3m=\frac{2}{3m}

m2=29\Rightarrow \displaystyle m^{2}=\frac{2}{9}

Hence, option 'D' is correct.

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও