If equation of normal at a point ;(m2,−m3) on the curve& ;x3−y2=0isy=3mx−4m3 then m2 equals
হানি নাটস
x3−y2=0
⇒3x2−2y(dxdy)=0
⇒3x2=2y(dxdy)
⇒2y3x2=dxdy
⇒(dxdy)(m2,−m3)=−2×m33×m4
∴−(dydx)=3m2
Therefore, equation of normal at given point is,
⇒(y+m3)=3m2(x−m2)
⇒3my+3m4=2x−2m2
⇒3my=2x−3m4−2m2
⇒y=3m2x−m3−32m..(1)
but given equation of normal is, y=3mx−4m3..(2)
Thus comparing (1) and (2), we get
3m=3m2
⇒m2=92
Hence, option 'D' is correct.