ফাংশনের মান নির্ণয়
if f(x)=x3+x2f(1)+xf(2)+f(3). then f(2) is-
-2
1
30
2
If f(x)=coshx+sinhxf(x)=\cosh x+\sinh x f(x)=coshx+sinhx then f(x1+x2+.......+xn)=f(x_{1}+x_{2}+.......+x_{n})=f(x1+x2+.......+xn)=
Let f(x)=∣x−x1∣+∣x−x2∣f(x)=\left | x-x_{1} \right |+\left | x-x_{2} \right |f(x)=∣x−x1∣+∣x−x2∣ where x1andx2x_{1} and x_{2}x1andx2 are distinct real numbers. Then the number of points at which f(x) is minimum is:
If f(x+12)+f(x−12)=f(x)f(x + \frac 1 2) + f(x - \frac 1 2) = f(x)f(x+21)+f(x−21)=f(x),∀ x ϵ R\forall\ x\ \epsilon\ R∀ x ϵ R, then f(x−3)+f(x+3)f(x-3) + f(x + 3)f(x−3)+f(x+3) is equal to
If x=(7+43)2n=[x]+fx = (7 + 4\sqrt {3})^{2n} = [x] + fx=(7+43)2n=[x]+f, where nϵNn \epsilon NnϵN and 0≤f<10\leq f < 10≤f<1, then x(1−f)x(1 - f)x(1−f) is equal to