বিপরীত ম্যাট্রিক্স
If [cosθ −sinθ 0sinθ cosθ 00 0 1]\left[ \begin{array}{l}\cos \theta \,\,\,\, - \sin \theta \,\,\,\,\,\,0\\\sin \theta \,\,\,\,\,\,\,\,\cos \theta \,\,\,\,\,\,0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,1\end{array} \right]cosθ−sinθ0sinθcosθ0001, then adjA=adjA = adjA=
ATA^TAT
111
000
A2{A^2}A2
A=[cosθ−sinθ0sinθcosθ0001]A=\begin{bmatrix} cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}A=cosθsinθ0−sinθcosθ0001
lets write co factor
C11=cosθC_{11}=\cos\thetaC11=cosθ C12=−sinθC_{12}=-\sin\thetaC12=−sinθ C13=0C_{13}=0C13=0
C21=sinθC_{21}=\sin\thetaC21=sinθ C22=cosθC_{22}=\cos\thetaC22=cosθ C23=0C_{23}=0C23=0
C31=0C_{31}=0C31=0 C32=0C_{32}=0C32=0 C33=1C_{33}=1C33=1
∴\therefore∴ co factor matrix
=[cosθ−sinθ0sinθcosθ0001]=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}=cosθsinθ0−sinθcosθ0001
∴Adj A=\therefore Adj\,A=∴AdjA= transpose of cofactor matrix
=AT=A^T=AT
যদি B= [201−2] \left [ \begin{matrix} 2 & 0 \\ 1 & - 2 \end{matrix} \right ] [210−2] হয় তবে, B−1 B^{- 1} B−1 নিচের কোনটি?
A একটি 3×3 ম্যাট্রিক্স এবং |A|=-7 হলে, |(2A)-1|=?
A=[7x210],B=[56−7−9] A = \left [ \begin{matrix} 7 & x \\ 2 & 10 \end{matrix} \right ] , B = \left [ \begin{matrix} 5 & 6 \\ - 7 & - 9 \end{matrix} \right ] A=[72x10],B=[5−76−9]
B-1 = ?
For square matrices AAA and BBB of the same order, we have adj(AB)=?adj (AB) = ?adj(AB)=?