বিপরীত ম্যাট্রিক্স

If [cosθsinθ0sinθcosθ0001]\left[ \begin{array}{l}\cos \theta \,\,\,\, - \sin \theta \,\,\,\,\,\,0\\\sin \theta \,\,\,\,\,\,\,\,\cos \theta \,\,\,\,\,\,0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,1\end{array} \right], then adjA=adjA =

হানি নাটস

A=[cosθsinθ0sinθcosθ0001]A=\begin{bmatrix} cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}

lets write co factor

C11=cosθC_{11}=\cos\theta C12=sinθC_{12}=-\sin\theta C13=0C_{13}=0

C21=sinθC_{21}=\sin\theta C22=cosθC_{22}=\cos\theta C23=0C_{23}=0

C31=0C_{31}=0 C32=0C_{32}=0 C33=1C_{33}=1

\therefore co factor matrix

=[cosθsinθ0sinθcosθ0001]=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}

AdjA=\therefore Adj\,A= transpose of cofactor matrix

=[cosθsinθ0sinθcosθ0001]=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}

=AT=A^T

বিপরীত ম্যাট্রিক্স টপিকের ওপরে পরীক্ষা দাও