Omega বিষয়ক

If 'ω\omega' is a complex cube root of unity,then ω(13+29+427...)+ω(12nbsp;+38+932...nbsp;)=\omega ^{ \begin{pmatrix} \frac { 1 }{ 3 }+\frac { 2 }{ 9 } +\frac { 4 }{ 27 } ...\infty \end{pmatrix} }+\omega^{ \begin{pmatrix} \frac { 1 }{ 2 }  +\frac { 3 }{ 8 } +\frac { 9 }{ 32 } ...\infty  \end{pmatrix} }=

13+29+427+......+\dfrac{1}{3}+\dfrac{2}{9}+\dfrac{4}{27}+......+\infty (infinte G.P.)

Sω=a1r=1S_\omega = \dfrac{a}{1-r} =1

12+38+932+......+\dfrac{1}{2}+\dfrac{3}{8}+\dfrac{9}{32}+......+\infty (infinte G.P.)

Sω=a1r=2S_\omega = \dfrac{a}{1-r} =2

We know,

1+ω+ω2=0ω1+ω2=1 1+\omega+\omega^2=0\\ \therefore\, \omega^1+\omega^2=-1

Omega বিষয়ক টপিকের ওপরে পরীক্ষা দাও