গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule

If Rolle's therorem holds for f(x)=x(x2+ax+b)+2atx=12f(x)=x\left( { x }^{ 2 }+ax+b \right) +2atx=\frac { 1 }{ 2 } in the interval (-1 , 1), then which of the following (S) is/are corect? ;

হানি নাটস

Given: f(x)=x(x2+ax+b)+2 f(x)=x\left(x^{2}+a x+b\right)+2

nolds Rolle's theorem at x=12 x=\frac{1}{2} in interwal [1,1] [-1,1]

then f(1)=f(1) f(-1)=f(1)

(1)((1)2+a(1)+b)+2=1(12+a(1)+b)+2(1a+b)+2=1+a+b+22b+a1=3+a+bb=1f(x)=0 at x=12(x2+ax+b)+2x2+ax=0 \begin{array}{l} \Rightarrow(-1)\left((-1)^{2}+a(-1)+b\right)+2=1\left(1^{2}+a(1)+b\right)+2 \\ \Rightarrow-(1-a+b)+2=1+a+b+2 \\ \Rightarrow 2-b+a-1=3+a+b \\ \Rightarrow b=-1 \\ f^{\prime}(x)=0 \quad \text { at } x=\frac{1}{2} \\ \Rightarrow\left(x^{2}+a x+b\right)+2 x^{2}+a x=0 \end{array}

14+a2+b+12+a2=034+a1=0a=14 \begin{array}{l} \Rightarrow \frac{1}{4}+\frac{a}{2}+b+\frac{1}{2}+\frac{a}{2}=0 \\ \Rightarrow \frac{3}{4}+a-1=0 \\ \Rightarrow a=-\frac{1}{4} \end{array}

How

a+b=14+(1)=141=34 \begin{aligned} a+b & =\frac{-1}{4}+(-1) \\ & =\frac{-1}{4}-1 \\ & =\frac{-3}{4} \end{aligned}

Hence option (A) is correct

গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule টপিকের ওপরে পরীক্ষা দাও