নতি (Argument)

If z1, z2z_{1},\ z_{2} are two complex numbers such that arg(z1+z2)=0arg\left( { z }_{ 1 }+{ z }_{ 2 } \right) =0 and Im(z1z2)=0Im\left( { z }_{ 1 }{ z }_{ 2 } \right) =0, then

হানি নাটস

Let the complex numbers be,

z1=a+ib,z2=x+iyz_1=a+ib,z_2=x+iy

arg(z1+z2)=arg(a+x+i(b+y))=0arg(z_1+z_2)=arg(a+x+i(b+y))=0

tan1(b+ya+x)=0\tan^{-1}\left ( \dfrac{b+y}{a+x} \right )=0

b+ya+x=0 \dfrac{b+y}{a+x}=0

b+y=0b+y=0.....(1)

Im(z1z2)=Im(axby+i(ay+bx))=0Im(z_1z_2)=Im(ax-by+i(ay+bx))=0

(ay+bx)=0(ay+bx)=0

from (1),

ay=xya=xay=xy\Rightarrow a=x

b=y,a=x\Rightarrow b=-y,a=x

z1=xiy,z2=x+iy\therefore z_1=x-iy,z_2=x+iy

Hence proved, z1=zˉ2z_1=\bar{z}_2

নতি (Argument) টপিকের ওপরে পরীক্ষা দাও