নতি (Argument)
If z=1+iz=1+iz=1+i, then the argument of z2ez−i{ z }^{ 2 }{ e }^{ z-i }z2ez−i is
π2\dfrac { \pi }{ 2 } 2π
π6\dfrac { \pi }{ 6 } 6π
π4\dfrac { \pi }{ 4 } 4π
π3\dfrac { \pi }{ 3 } 3π
Let w=z2ez−iw={ z }^{ 2 }{ e }^{ z-i }w=z2ez−i
Put z=1+iz=1+iz=1+i
⇒w=(1+i)2e1+i−i=(1+2i+i2)e\Rightarrow w={ \left( 1+i \right) }^{ 2 }{ e }^{ 1+i-i }=\left( 1+2i+{ i }^{ 2 } \right) e⇒w=(1+i)2e1+i−i=(1+2i+i2)e
=(1+2i−1)e=2ei=\left( 1+2i-1 \right) e=2ei=(1+2i−1)e=2ei
Now, argument of w=arg(w)w=arg\left( w \right) w=arg(w)
=tan−1(2e0)=tan−1∞=π2=\tan ^{ -1 }{ \left( \dfrac { 2e }{ 0 } \right) } =\tan ^{ -1 }{ \infty } =\dfrac { \pi }{ 2 } =tan−1(02e)=tan−1∞=2π
z=-1+i হলে , z‾ \overline{z} z এর আর্গুমেন্ট কত?
If z1, z2z_{1},\ z_{2}z1, z2 are two complex numbers such that arg(z1+z2)=0arg\left( { z }_{ 1 }+{ z }_{ 2 } \right) =0arg(z1+z2)=0 and Im(z1z2)=0Im\left( { z }_{ 1 }{ z }_{ 2 } \right) =0Im(z1z2)=0, then
Z= -1+i এর আর্গুমেন্ট কত ?
(i+1)2(i−1)4 \frac{\left ( i + 1 \right )^{2}}{\left ( i - 1 \right )^{4}} (i−1)4(i+1)2 এর আর্গুমেনট কোনটি ?