নির্দিষ্ট যোগজ

0e2xcos4xdx=?\int_{0}^{\infty}{e^{-2x}{cos}4xdx}=?

ধরি, I=e2xcos4xdx=cos4xe2xdx[ddx(cos4x)e2xdx]dxI=\int{e^{-2x}\cos{4xdx}} =\cos{4x}\int{e^{-2x}dx-\int\left[\frac{d}{dx}\left(\cos{4x}\right)\int{e^{-2x}dx}\right]}dx

=e2xcos4x2[4sin4x×e2x2]dx=e2xcos4x22e2xsin4xdx=\frac{e^{-2x}\cos{4}x}{-2}-\int\left[-4\sin{4x}\times\frac{e^{-2x}}{-2}\right]dx =-\frac{e^{-2x}\cos{4}x}{2}-2\int{e^{-2x}\sin{4xdx}}

=e2xcos4x22[sin4xe2xdx{ddx(sin4x)e2xdx}dx]=\frac{-e^{-2x}\cos{4}x}{2}-2\left[\sin{4x}\int{e^{-2x}dx-\int\left\{\frac{d}{dx}\left(\sin{4x}\right)\int{e^{-2x}dx}\right\}}dx\right]

=e2xcos4x22sin4xe2x2+24cos4xe2x2dx5I=e2xsin4xe2xcos4x2=-\frac{e^{-2x}\cos{4}x}{2}-2\sin{4x}\frac{e^{-2x}}{-2}+2\int{4\cos{4x}\frac{e^{-2x}}{-2}}dx \Rightarrow5I=e^{-2x}\sin{4x}-\frac{e^{-2x}\cos{4x}}{2}

I=e2xsin4x5e2xcos4x10 0e2x cos4xdx=[e2x sin 4x5e2x cos 4x10]0\therefore I=\frac{e^{-2x}\sin{4x}}{5}-\frac{e^{-2x}\cos{4x}}{10} \therefore\ \int_{0}^{\infty}e^{-2x}\ cos\,4x\,dx=\left[\frac{e^{-2x}\ sin\ 4x}{5}-\frac{e^{-2x}\ cos\ 4x}{10}\right]_0^\infty

=000+110[e2=0]=110=0-0-0+\frac{1}{10} \left[\because e^{-2\infty}=0\right] =\frac{1}{10}

নির্দিষ্ট যোগজ টপিকের ওপরে পরীক্ষা দাও