The value of ∫−π/2199π/2(1+cos2x)dx is?
হানি নাটস
Let I=∫−π/2199π/2(1+cos2x)dx
We have to find the value of I.
From trigonometric identity,
∴I=∫−π/21+cos2x=2cos2x2cos2xdx=2∫−π/2199/2cos2xdx
The period of the periodic function cos2x is π.
Using the property of periodicity,
∫aa+nTf(x)dx=n∫0Tf(x)dx, where T is the period of the function.
∴I=2∫−π/2(−π/2+100π)cos2xdx∴I=1002∫0πcos2xdx[cos2x=cosx∀x∈[0,2π],cos2x=−cosx∀x∈[2π,π]]∴I=2002[∫0π/2cosxdx+∫π/2π(−cosx)dx]∴I=1002[[sinx]0π/2+[−sinx]π/2π]∴I=1002[[sin2π−sin0]+[(−sinπ)−(−sin2π)]∴I=1002[(1−0)+(0+1)]∴I=2002