ফাংশনের মান নির্ণয়

Let f(x)=2x3,1x5f(x)=2-|x-3|, 1 \le x \le 5 and for rest of the values f(x)f(x) can be obtained by using the relation f(5x)=αf(x)xRf(5x)=\alpha\, f(x)\forall\, x \in R.
The value of f(2007)f(2007) taking α=5\alpha = 5, is: 

হানি নাটস

f(x)=2x3,1x5f\left( x \right) =2-\left| x-3 \right| ,1\le x\le 5

f(1)=0f\left( 1 \right) =0

f(2)=1f\left( 2 \right) =1

f(3)=2f\left( 3 \right) =2

f(4)=1f\left( 4 \right) =1

f(5)=0f\left( 5 \right) =0

f(2007)=αf(20075)f\left( 2007 \right) =\alpha f\left( \cfrac { 2007 }{ 5 } \right)

=α2f(200725)={ \alpha }^{ 2 }f\left( \cfrac { 2007 }{ 25 } \right)

=α3f(2007125)={ \alpha }^{ 3 }f\left( \cfrac { 2007 }{ 125 } \right)

=α4f(2007625)={ \alpha }^{ 4 }f\left( \cfrac { 2007 }{ 625 } \right)

=α5f(20073125)={ \alpha }^{ 5 }f\left(\cfrac { 2007 }{ 3125 } \right)

20073125<1\cfrac { 2007 }{ 3125 } <1\therefore Rejected

f(2007)=α4f(2007625)\quad f\left( 2007 \right) ={ \alpha }^{ 4 }f\left(\cfrac { 2007 }{ 625 } \right)

20076253\cfrac { 2007 }{ 625 } \approx 3

f(2007)=α4f(3)f(2007)={ \alpha }^{ 4 }f(3)

=54×2={ 5 }^{ 4 }\times 2

=1250=1250

ফাংশনের মান নির্ণয় টপিকের ওপরে পরীক্ষা দাও