Let f(x)=2−∣x−3∣,1≤x≤5 and for rest of the values f(x) can be obtained by using the relation f(5x)=αf(x)∀x∈R.
The value of f(2007) taking α=5, is:
হানি নাটস
f(x)=2−∣x−3∣,1≤x≤5
f(1)=0
f(2)=1
f(3)=2
f(4)=1
f(5)=0
f(2007)=αf(52007)
=α2f(252007)
=α3f(1252007)
=α4f(6252007)
=α5f(31252007)
31252007<1∴ Rejected
f(2007)=α4f(6252007)
6252007≈3
f(2007)=α4f(3)
=54×2
=1250