Let f(x)=(x+1)2−1,x≥−1. Then the set {x:f(x)=f−1(x)} is-
হানি নাটস
f(x)=(x+1)2−1 Let, y=f(x)⇒x=f−1(y)y=(x+1)2−1⇒(x+1)2=y+1⇒x+1=±y+1⇒x=1±y+1⇒f−1(y)=1±y+1
⇒f−1(x)=1±x+1
f(x)=f−1(x)⇒(x+1)2−1=1±x+1⇒(x+1)2−1−1=±x+1⇒(x+1)2−2=±x+1⇒{(x+1)2−2}2=x+1
⇒(x+1)4−2(x+1)2.2+4=x+1⇒(x+1)4−4(x+1)2+4=x+1⇒(x+1)4−4(x+1)2−(x+1)+4=0
Let,
t=x+1t4−4t2−t+4=0f(t)=t4−4t2−t+4
⇒f(1)=1−4−1+4=0∴t4−4t2−t+4=0.
⇒t3(t−1)+t2(t−1)−3t(t−1)−4(t−1)=0⇒(t−1)(t3+t2−3t−4)=0
t−1=0⇒t=1⇒x+1=1⇒x=0